Invention Categories · Innovation Timeline · History of Science · Technology at Home · Ancient Inventions

Hertz physicist who clarified and expanded the electromagnetic theory

Heinrich Rudolf Hertz

Heinrich Rudolf Hertz, born in Hamburg on February 22, 1857, was the first person to prove electromagnetic waves exist (hence the wavelength doodle) and that electricity can be carried through them. He even lends his name to a unit of measurement, the hertz, which is equal to one cycle per second and is used to gauge frequency.

Hertz was the first to satisfactorily demonstrate the existence of electromagnetic waves by building an apparatus to produce and detect radio waves. Heinrich Rudolf Hertz helped establish the photoelectric effect (which was later explained by Albert Einstein) when he noticed that a charged object loses its charge more readily when illuminated by ultraviolet light.

The power of sending messages through space, in any direction, over great distances, is so enormous an addition to the utility of aircraft that a few words must here be said about wireless telegraphy. The discovery was made by the gradual researches of men of science. These researches had their beginning in a famous paper by James Clerk Maxwell, who subsequently became the first professor of experimental physics at Cambridge. His paper, On a Dynamical Theory of the Electro-magnetic Field, read to the Royal Society in 1864, contains a theoretical demonstration that electro-magnetic action travels through space in waves with the velocity of light.

Twenty-three years later, in 1887, Heinrich Rudolf Hertz, of the University of Bonn, published the results of his experiments in producing these waves by means of oscillating currents of electricity.

Google honors the German physicist Heinrich Rudolf Hertz with Doodle on the Google homepage

His investigations confirmed what Clerk Maxwell had proved mathematically. Thereafter progress was rapid, and during the closing years of the nineteenth century the problem of subduing the waves to the service of man was attacked and solved.

In 1889 Professor , was measuring electrical radiation.  At Liverpool  University College he constructed a Hertz radiator to emit the waves, and received them at various points of the building.
Edouard Branly’s invention of the ‘coherer’, an instrument designed to receive Hertzian waves, was communicated to the British Association at Edinburgh in 1893.
During the same year Nikola Tesla published his researches on high frequency currents; on these much of the later work on wireless telegraphy was based.
In 1895-6 William Rutherford set up at the Cavendish Laboratory apparatus by which he received signals in distant parts of Cambridge up to a distance of half a mile from the oscillator.

Many other men of science, among whom was Captain H. B. Jackson, of the Royal Navy, were at work on the problem, when in 1896 Signor Guglielmo Marconi arrived in England with an apparatus of his own construction which ultimately brought wireless telegraphy to the stage of practical and commercial utility. By 1899 signals had been transmitted across the English Channel.
From the Popular Science Monthly, June-December, 1903

This work involved, not merely the ordinary experience of an electrical engineer, but also the careful consideration of many new problems and the construction of devices not before used. Every step had to be made secure by laboratory experiments before the responsibility could be incurred of advising on the nature of the machinery and appliances to be ordered. Many months in the year 1901 were thus occupied by the author in making small-scale experiments in London and in superintendence of large-scale experiments at the site of the first power station at Poldhu, near Mullion, in Cornwall, before the plant was erected and any attempt was made by Mr. Marconi to commence actual telegraphic experiments. As this work was of a highly confidential nature, it is obviously impossible to enter into the details of the arrangements, either as made by the writer in the first instance, or as they have been subsequently modified by Mr. Marconi. The design of the aerial and of the oscillation transformers and many of the details in the working appliances are entirely due to Mr. Marconi, but as a final result, a power plant was erected for the production of Hertzian waves on a scale never before attempted. The utilisation of 50 H.P. or 100 H.P. for electric wave production has involved dealing with many difficult problems in electrical engineering, not so much in novelty of general arrangement as in details. It will easily be understood that Leyden jars, spark balls and oscillators, which are quite suitable for use with an induction coil, would be destroyed immediately if employed with a large alternating-current plant and immensely powerful transformers.

Poldhu Power Station, Cornwall, England.

Wooden Towers supporting the Marconi Aerial at Poldhu Power Station, Cornwall, England.

In the initial experiments with this machinery and in its first working there was very considerable risk, owing to its novel and dangerous nature; but throughout the whole of the work from the very beginning, no accident of any kind has taken place, so great have been the precautions taken. The only thing in the nature of a mishap was the collapse of a ring of tall masts, erected in the first place to sustain the aerial wires, but which now have been replaced by four substantial timber towers, 215 feet in height, placed at the corners of a square, 200 feet in length. These four towers sustain a conical arrangement of insulated wires which can be used in sections and which constitute the transmitting radiator or receiver, as the case may be. Each of these wires is 200 feet in length and formed of bare stranded wire.

Transversal electromagnetic waves

Transversal electromagnetic waves, according to Heinrich Hertz's 1887 experiments

Nothing is more remarkable, however, than the small amount of energy which, if properly utilised in electric wave making, will suffice to influence a sensitive receiver at a distance of even one or two hundred miles. Suppose, for instance, that we charge a condenser consisting of a battery of Leyden jars, having a capacity of one seventy-fifth of a microfarad, to a potential of 15,000 volts; the energy stored up in this condenser is then equal to 1·5 joules, or a little more than one foot-pound. If this energy is discharged in the form of a spark five millimetres in length through the primary coil of an oscillation transformer, associated with an aerial 150 feet in height, the circuits being properly tuned by Mr. Marconi’s method, then such an aerial will affect, as he has shown, one of Mr. Marconi’s receivers, including a nickel silver filings coherer tube, at a distance of over two hundred miles over sea. Consider what this means. The energy stored up in the Leyden jars cannot all be radiated as wave energy by the aerial, probably only half of it is thus radiated. Hence the impartation to the ether at any one locality of about half a foot-pound of energy in the form of a long Hertzian wave is sufficient to affect sensitive receivers situated at any point on the circumference of a circle of 200 miles radius described on the open sea.

Hertzian wave telegraphy is sometimes described as being extravagant in power, but, as a matter of fact, the most remarkable thing about it is the small amount of power really involved in conducting it. On the other hand, Hertzian wave manufacture is not altogether a matter of power. It is much more dependent upon the manner in which the ether is struck. Just as half an ounce of dynamite in exploding may make more noise than a ton of gunpowder, because it hits the air more suddenly, so the formation of an effective wave in the ether is better achieved by the right application of a small energy than by the wrong mode of application of a much larger amount. If we translate this fact into the language of electronic theory, it amounts simply to this. It is the electron alone which has a grip of the ether. To create an ether wave, we have to start or stop crowds of electrons very suddenly. If in motion, their motion implies energy, but it is not only their energy which is concerned in the wave making, but the acceleration, positive or negative—i.e., the quickness with which they are started or stopped. It is possible we may discover in time a way of manufacturing long ether waves without the use of an electric spark, but at present we know only one way of doing this—viz., by the discharge of a condenser, and in the discharge of large condensers of very high potentials it is difficult to secure that extreme suddenness of starting the discharge which we can do in the case of smaller capacities and voltages.

How strange it is that the discharge of a Leyden jar studied so profoundly by Franklin, Henry, Faraday, Maxwell, Kelvin and Lodge should have become an electrical engineering appliance of great importance!

Whilst there are many matters connected with the commercial aspect of Hertzian wave telegraphy with which we are not here concerned, there is one on which a word may properly be said. The ability to communicate over long distances by Hertzian waves is now demonstrated beyond question, and even if all difficulties are not overcome at once, it has a field of very practical utility, and may even become of national importance. Under these circumstances, we may consider whether it is absolutely necessary to place the signalling stations so near the coast. The greater facility of transmission over sea has already been discussed and explained, but in time of war, the masts and towers which are essential at present in connection with transmitting stations could be wrecked by shot or shell from an enemy’s battleship at a distance of five or six miles out at sea, and would certainly be done within territorial waters. Should not this question receive attention in choosing the location of important signalling stations? For if they can, without prejudice to their use, be placed inland by a distance sufficient to conceal them from sight, their value as a national asset in time of war might be greatly increased.

It has been often contended that whilst cables could be cut in time of war no one can cut the ether; but wireless telegraph stations in exposed situations on high promontories, where they are visible for ten to fifteen miles out at sea and undefended by any forts, could easily be destroyed. The great towers which are essential to carry large aerials are a conspicuous object for ten miles out at sea; and a single well-placed shell from a six-inch gun would wreck the place and put the station completely out of use for many months. Hence if oceanic telegraphy is ever to be conducted in a manner in which the communication will be inviolable or, at any rate, not be capable of interruption by acts of war, the careful selection of the sites for stations is a matter of importance. A small station consisting of a single 150-foot mast and a wooden hut can easily be removed or replaced, but an expensive power station, the mere aerial of which may cost several thousand pounds, is not to be put up in a short time




[From the Popular Science Monthly, June-December, 1903.]



Electric telegraphy on land – the First Atlantic Cable

George Iles

[From “Flame, Electricity and the Camera,” copyright Doubleday, Page & Co., New York.]

Electric telegraphy on land has put a vast distance between itself and the mechanical signalling of Chappé, just as the scope and availability of the French invention are in high contrast with the rude signal fires of the primitive savage. As the first land telegraphs joined village to village, and city to city, the crossing of water came in as a minor incident; the wires were readily committed to the bridges which spanned streams of moderate width. Where a river or inlet was unbridged, or a channel was too wide for the roadway of the engineer, the question arose, May we lay an electric wire under water? With an ordinary land line, air serves as so good a non-conductor and insulator that as a rule cheap iron may be employed for the wire instead of expensive copper. In the quest for non-conductors suitable for immersion in rivers, channels, and the sea, obstacles of a stubborn kind were confronted. To overcome them demanded new materials, more refined instruments, and a complete revision of electrical philosophy.

As far back as 1795, Francisco Salva had recommended to the Academy of Sciences, Barcelona, the covering of subaqueous wires by resin, which is both impenetrable by water and a non-conductor of electricity. Insulators, indeed, of one kind and another, were common enough, but each of them was defective in some quality indispensable for success. Neither glass nor porcelain is flexible, and therefore to lay a continuous line of one or the other was out of the question. Resin and pitch were even more faulty, because extremely brittle and friable. What of such fibres as hemp or silk, if saturated with tar or some other good non-conductor? For very short distances under still water they served fairly well, but any exposure to a rocky beach with its chafing action, any rub by a passing anchor, was fatal to them. What the copper wire needed was a covering impervious to water, unchangeable in composition by time, tough of texture, and non-conducting in the highest degree. Fortunately all these properties are united in gutta-percha: they exist in nothing else known to art. Gutta-percha is the hardened juice of a large tree (Isonandra gutta) common in the Malay Archipelago; it is tough and strong, easily moulded when moderately heated. In comparison with copper it is but one 60,000,000,000,000,000,000th as conductive. As without gutta-percha there could be no ocean telegraphy, it is worth while recalling how it came within the purview of the electrical engineer.

In 1843 José d’Almeida, a Portuguese engineer, presented to the Royal Asiatic Society, London, the first specimens of gutta-percha brought to Europe. A few months later, Dr. W. Montgomerie, a surgeon, gave other specimens to the Society of Arts, of London, which exhibited them; but it was four years before the chief characteristic of the gum was recognized. In 1847 Mr. S. T. Armstrong of New York, during a visit to London, inspected a pound or two of gutta-percha, and found it to be twice as good a non-conductor as glass. The next year, through his instrumentality, a cable covered with this new insulator was laid between New York and Jersey City; its success prompted Mr Armstrong to suggest that a similarly protected cable be submerged between America and Europe. Eighteen years of untiring effort, impeded by the errors inevitable to the pioneer, stood between the proposal and its fulfilment. In 1848 the Messrs. Siemens laid under water in the port of Kiel a wire covered with seamless gutta-percha, such as, beginning with 1847, they had employed for subterranean conductors. This particular wire was not used for telegraphy, but formed part of a submarine-mine system. In 1849 Mr. C. V. Walker laid an experimental line in the English Channel; he proved the possibility of signalling for two miles through a wire covered with gutta-percha, and so prepared the way for a venture which joined the shores of France and England.

Fig. 58.—Calais-Dover cable, 1851
Fig. 58.—Calais-Dover cable, 1851

In 1850 a cable twenty-five miles in length was laid from Dover to Calais, only to prove[Pg 40] worthless from faulty insulation and the lack of armour against dragging anchors and fretting rocks. In 1851 the experiment was repeated with success. The conductor now was not a single wire of copper, but four wires, wound spirally, so as to combine strength with flexibility; these were covered with gutta-percha and surrounded with tarred hemp. As a means of imparting additional strength, ten iron wires were wound round the hemp—a feature which has been copied in every subsequent cable (Fig. 58). The engineers were fast learning the rigorous conditions of submarine telegraphy; in its essentials the Dover-Calais line continues to be the type of deep-sea cables to-day. The success of the wire laid across the British Channel incited other ventures of the kind. Many of them, through careless construction or unskilful laying, were utter failures. At last, in 1855, a submarine line 171 miles in length gave excellent service, as it united Varna with Constantinople; this was the greatest length of satisfactory cable until the submergence of an Atlantic line.[Pg 41]

In 1854 Cyrus W. Field of New York opened a new chapter in electrical enterprise as he resolved to lay a cable between Ireland and Newfoundland, along the shortest line that joins Europe to America. He chose Valentia and Heart’s Content, a little more than 1,600 miles apart, as his termini, and at once began to enlist the co-operation of his friends. Although an unfaltering enthusiast when once his great idea had possession of him, Mr. Field was a man of strong common sense. From first to last he went upon well-ascertained facts; when he failed he did so simply because other facts, which he could not possibly know, had to be disclosed by costly experience. Messrs. Whitehouse and Bright, electricians to his company, were instructed to begin a preliminary series of experiments. They united a continuous stretch of wires laid beneath land and water for a distance of 2,000 miles, and found that through this extraordinary circuit they could transmit as many as four signals per second. They inferred that an Atlantic cable would offer but little more resistance, and would therefore be electrically workable and commercially lucrative.

In 1857 a cable was forthwith manufactured, divided in halves, and stowed in the holds of the Niagara of the United States navy, and the Agamemnon of the British fleet. The Niagara sailed from Ireland; the sister ship proceeded to Newfoundland, and was to meet her in mid-ocean. When the Niagara had run out 335[Pg 42] miles of her cable it snapped under a sudden increase of strain at the paying-out machinery; all attempts at recovery were unavailing, and the work for that year was abandoned. The next year it was resumed, a liberal supply of new cable having been manufactured to replace the lost section, and to meet any fresh emergency that might arise. A new plan of voyages was adopted: the vessels now sailed together to mid-sea, uniting there both portions of the cable; then one ship steamed off to Ireland, the other to the Newfoundland coast. Both reached their destinations on the same day, August 5, 1858, and, feeble and irregular though it was, an electric pulse for the first time now bore a message from hemisphere to hemisphere. After 732 despatches had passed through the wire it became silent forever. In one of these despatches from London, the War Office countermanded the departure of two regiments about to leave Canada for England, which saved an outlay of about $250,000. This widely quoted fact demonstrated with telling effect the value of cable telegraphy.

Now followed years of struggle which would have dismayed any less resolute soul than Mr. Field. The Civil War had broken out, with its perils to the Union, its alarms and anxieties for every American heart. But while battleships and cruisers were patrolling the coast from Maine to Florida, and regiments were marching through Washington on their way to battle,[Pg 43] there was no remission of effort on the part of the great projector.

Indeed, in the misunderstandings which grew out of the war, and that at one time threatened international conflict, he plainly saw how a cable would have been a peace-maker. A single word of explanation through its wire, and angry feelings on both sides of the ocean would have been allayed at the time of the Trent affair. In this conviction he was confirmed by the English press; the London Times said: “We nearly went to war with America because we had no telegraph across the Atlantic.” In 1859 the British government had appointed a committee of eminent engineers to inquire into the feasibility of an Atlantic telegraph, with a view to ascertaining what was wanting for success, and with the intention of adding to its original aid in case the enterprise were revived. In July, 1863, this committee presented a report entirely favourable in its terms, affirming “that a well-insulated cable, properly protected, of suitable specific gravity, made with care, tested under water throughout its progress with the best-known apparatus, and paid into the ocean with the most improved machinery, possesses every prospect of not only being successfully laid in the first instance, but may reasonably be relied upon to continue for many years in an efficient state for the transmission of signals.”

Taking his stand upon this endorsement, Mr. Field now addressed himself to the task of raising[Pg 44] the large sum needed to make and lay a new cable which should be so much better than the old ones as to reward its owners with triumph. He found his English friends willing to venture the capital required, and without further delay the manufacture of a new cable was taken in hand. In every detail the recommendations of the Scientific Committee were carried out to the letter, so that the cable of 1865 was incomparably superior to that of 1858. First, the central copper wire, which was the nerve along which the lightning was to run, was nearly three times larger than before. The old conductor was a strand consisting of seven fine wires, six laid around one, and weighed but 107 pounds to the mile. The new was composed of the same number of wires, but weighed 300 pounds to the mile. It was made of the finest copper obtainable.

To secure insulation, this conductor was first embedded in Chatterton’s compound, a preparation impervious to water, and then covered with four layers of gutta-percha, which were laid on alternately with four thin layers of Chatterton’s compound. The old cable had but three coatings of gutta-percha, with nothing between. Its entire insulation weighed but 261 pounds to the mile, while that of the new weighed 400 pounds. The exterior wires, ten in number, were of Bessemer steel, each separately wound[Pg 45] in pitch-soaked hemp yarn, the shore ends specially protected by thirty-six wires girdling the whole. Here was a combination of the tenacity of steel with much of the flexibility of rope. The insulation of the copper was so excellent as to exceed by a hundredfold that of the core of 1858—which, faulty though it was, had, nevertheless, sufficed for signals. So much inconvenience and risk had been encountered in dividing the task of cable-laying between two ships that this time it was decided to charter a single vessel, the Great Eastern, which, fortunately, was large enough to accommodate the cable in an unbroken length. Foilhommerum Bay, about six miles from Valentia, was selected as the new Irish terminus by the company. Although the most anxious care was exercised in every detail, yet, when 1,186 miles had been laid, the cable parted in 11,000 feet of water, and although thrice it was grappled and brought toward the surface, thrice it slipped off the grappling hooks and escaped to the ocean floor. Mr. Field was obliged to return to England and face as best he might the men whose capital lay at the bottom of the sea—perchance as worthless as so much Atlantic ooze. With heroic persistence he argued that all difficulties would yield to a renewed attack. There must be redoubled precautions and vigilance never for a moment relaxed. Everything that deep-sea telegraphy has since accomplished was at that moment daylight clear to his prophetic view. Never has there been a more signal example of the power of enthusiasm to stir cold-blooded men of business; never has there been a more striking illustration of how much science may depend for success upon the intelligence and the courage of capital. Electricians might have gone on perfecting exquisite apparatus for ocean telegraphy, or indicated the weak points in the comparatively rude machinery which made and laid the cable, yet their exertions would have been wasted if men of wealth had not responded to Mr. Field’s renewed appeal for help. Thrice these men had invested largely, and thrice disaster had pursued their ventures; nevertheless they had faith surviving all misfortunes for a fourth attempt.

In 1866 a new company was organized, for two objects: first, to recover the cable lost the previous year and complete it to the American shore; second, to lay another beside it in a parallel course. The Great Eastern was again put in commission, and remodelled in accordance with the experience of her preceding voyage. This time the exterior wires of the cable were of galvanized iron, the better to resist corrosion. The paying-out machinery was reconstructed and greatly improved. On July 13, 1866, the huge steamer began running out her cable twenty-five miles north of the line struck out during the expedition of 1865; she arrived without mishap in Newfoundland on July 27, and electrical communication was re-established between America and Europe. The steamer now returned to the spot where she had lost the cable a few months before; after eighteen days’ search it was brought to the deck in good order. Union was effected with the cable stowed in the tanks below, and the prow of the vessel was once more turned to Newfoundland. On September 8th this second cable was safely landed at Trinity Bay. Misfortunes now were at an end; the courage of Mr. Field knew victory at last; the highest honors of two continents were showered upon him.

‘Tis not the grapes of Canaan that repay,
But the high faith that failed not by the way.

Fig. 59.—Commercial cable, 1894
Fig. 59.—Commercial cable, 1894

What at first was as much a daring adventure as a business enterprise has now taken its place as a task no more out of the common than building a steamship, or rearing a cantilever bridge. Given its price, which will include too moderate a profit to betray any expectation of failure, and a responsible firm will contract to lay a cable across the Pacific itself. In the Atlantic lines the uniformly low temperature of the ocean floor (about 4° C.), and the great pressure of the superincumbent sea, co-operate in effecting an enormous enhancement both in the insulation and in the carrying capacity of the wire. As an example of recent work in ocean telegraphy let us glance at the cable laid in 1894, by the Commercial Cable Company of New York. It unites Cape Canso, on the northeastern coast of Nova Scotia, to Waterville, on the southwestern coast of Ireland. The central portion of this cable much resembles that of its predecessor in 1866. Its exterior armour of steel wires is much more elaborate. The first part of Fig. 59 shows the details of manufacture: the central copper core is covered with gutta-percha, then with jute, upon which the steel wires are spirally wound, followed by a strong outer covering. For the greatest depths at sea, type A is employed for a total length of 1,420 miles; the diameter of this part of the cable is seven-eighths of an inch. As the water lessens in depth the sheathing increases in size until the diameter of the cable becomes one and one-sixteenth inches for 152 miles, as type B. The cable now undergoes a third enlargement, and then its fourth and last proportions are presented as it touches the shore, for a distance of one and three-quarter miles, where type C has a diameter of two and one-half inches. The weights of material used in this cable are: copper wire, 495 tons; gutta-percha, 315 tons; jute yarn, 575 tons; steel wire, 3,000 tons; compound and tar, 1,075 tons; total, 5,460 tons. The telegraph-ship Faraday, specially designed for cable-laying, accomplished the work without mishap.

Electrical science owes much to the Atlantic cables, in particular to the first of them. At the very beginning it banished the idea that electricity as it passes through metallic conductors has anything like its velocity through free space. It was soon found, as Professor Mendenhall says, “that it is no more correct to assign a definite velocity to electricity than to a river. As the rate of flow of a river is determined by the character of its bed, its gradient, and other circumstances, so the velocity of an electric current is found to depend on the conditions under which the flow takes place.” Mile for mile the original Atlantic cable had twenty times the retarding effect of a good aerial line; the best recent cables reduce this figure by nearly one-half.

In an extreme form, this slowing down reminds us of the obstruction of light as it enters the atmosphere of the earth, of the further impediment which the rays encounter if they pass from the air into the sea. In the main the causes which hinder a pulse committed to a cable are two: induction, and the electrostatic capacity of the wire, that is, the capacity of the wire to take up a charge of its own, just as if it were the metal of a Leyden jar.

Let us first consider induction. As a current takes its way through the copper core it induces in its surroundings a second and opposing current. For this the remedy is one too costly to be applied. Were a cable manufactured in a double line, as in the best telephonic circuits, induction, with its retarding and quenching effects, would be neutralized. Here the steel wire armour which encircles the cable plays an unwelcome part. Induction is always proportioned to the conductivity of the mass in which it appears; as steel is an excellent conductor, the armour of an ocean cable, close as it is to the copper core, has induced in it a current much stronger, and therefore more retarding, than if the steel wire were absent.

A word now as to the second difficulty in working beneath the sea—that due to the absorbing power of the line itself. An Atlantic cable, like any other extended conductor, is virtually a long, cylindrical Leyden jar, the copper wire forming the inner coat, and its surroundings the outer coat. Before a signal can be received at the distant terminus the wire must first be charged. The effect is somewhat like transmitting a signal through water which fills a rubber tube; first of all the tube is distended, and its compression, or secondary effect, really transmits the impulse. A remedy for this is a condenser formed of alternate sheets of tin-foil and mica, C, connected with the battery, B, so as to balance the electric charge of the cable wire (Fig. 60).

In the first Atlantic line an impulse demanded one-seventh of a second for its journey. This was reduced when Mr. Whitehouse made the capital discovery that the speed of a signal is increased threefold when the wire is alternately connected with the zinc and copper poles of the battery. Sir William Thomson ascertained that these successive pulses are most effective when of proportioned lengths. He accordingly devised an automatic transmitter which draws a duly perforated slip of paper under a metallic spring connected with the cable. To-day 250 to 300 letters are sent per minute instead of fifteen, as at first.

Fig. 60.—Condenser
Fig. 60.—Condenser

In many ways a deep-sea cable exaggerates in is of a cable may be in regions of widely diverse electrical potential, or pressure, just as the readings of the barometer at these two places may differ much. If a copper wire were allowed to offer itself as a gateless conductor it would equalize these variations of potential with serious injury to itself. Accordingly the rule is adopted of working the cable not directly, as if it were a land line, but indirectly through condensers. As the throb sent through such apparatus is but momentary, the cable is in no risk from the strong currents which would course through it if it were permitted to be an open channel.

Fig. 61.—Reflecting galvanometer  L, lamp; N, moving spot of light reflected from mirror
Fig. 61.—Reflecting galvanometer
L, lamp; N, moving spot of light reflected from mirror

A serious error in working the first cables was in supposing that they required strong currents as in land lines of considerable length. The very reverse is the fact. Mr. Charles Bright, in Submarine Telegraphs, says:

“Mr. Latimer Clark had the conductor of the 1865 and 1866 lines joined together at the Newfoundland end, thus forming an unbroken length of 3,700 miles in circuit. He then placed some sulphuric acid in a very small silver thimble, with a fragment of zinc weighing a grain or two. By this primitive agency he succeeded in conveying signals through twice the breadth of the Atlantic Ocean in little more than a second of time after making contact. The deflections were not of a dubious character, but full and strong, from which it was manifest than an even smaller battery would suffice to produce somewhat similar effects.”

Fig. 62.—Siphon recorder
Fig. 62.—Siphon recorder

At first in operating the Atlantic cable a mirror galvanometer was employed as a receiver. The principle of this receiver has often been illustrated by a mischievous boy as, with a slight and almost imperceptible motion of his hand, he has used a bit of looking-glass to dart a ray of reflected sunlight across a wide street or a large room. On the same plan, the extremely minute motion of a galvanometer, as it receives the successive pulsations of a message, is magnified by a weightless lever of light so that the words are easily read by an operator (Fig. 61). This beautiful invention comes from the hands of Sir William Thomson [now Lord Kelvin], who, more than any other electrician, has made ocean telegraphy an established success.

Fig. 63.—Siphon record. “Arrived yesterday”
Fig. 63.—Siphon record. “Arrived yesterday”

In another receiver, also of his design, the siphon recorder, he began by taking advantage of the fact, observed long before by Bose, that a charge of electricity stimulates the flow of a liquid. In its original form the ink-well into which the siphon dipped was insulated and charged to a high voltage by an influence-machine; the ink, powerfully repelled, was spurted from the siphon point to a moving strip of paper beneath (Fig. 62). It was afterward found better to use a delicate mechanical shaker which throws out the ink in minute drops as the cable current gently sways the siphon back and forth (Fig. 63).

Minute as the current is which suffices for cable telegraphy, it is essential that the metallic circuit be not only unbroken, but unimpaired throughout. No part of his duty has more severely taxed the resources of the electrician than to discover the breaks and leaks in his ocean cables. One of his methods is to pour electricity as it were, into a broken wire, much as if it were a narrow tube, and estimate the length of the wire (and consequently the distance from shore to the defect or break) by the quantity of current required to fill it.

In 1855 the Regents of the Smithsonian Institution, Washington, D. C., at the instance of their secretary, Professor Joseph Henry, took evidence with respect to his claims as inventor of the electric telegraph. The essential paragraphs of Professor Henry’s statement are taken from the Proceedings of the Board of Regents of the Smithsonian Institution, Washington, 1857.

There are several forms of the electric telegraph; first, that in which frictional electricity has been proposed to produce sparks and motion of pith balls at a distance.

Second, that in which galvanism has been employed to produce signals by means of bubbles of gas from the decomposition of water.

Third, that in which electro-magnetism is the motive power to produce motion at a distance; and again, of the latter there are two kinds of telegraphs, those in which the intelligence is indicated by the motion of a magnetic needle, and those in which sounds and permanent signs are made by the attraction of an electro-magnet. The latter is the class to which Mr. Morse’s invention belongs. The following is a brief exposition of the several steps which led to this form of the telegraph.

The first essential fact which rendered the electro-magnetic telegraph possible was discovered by Oersted, in the winter of 1819-’20. It is illustrated in the magnetic needle is deflected by the action of a current of galvanism transmitted through the wire A B.

Fig. 1 Fig. 1

The second fact of importance, discovered in 1820, by Arago and Davy, is illustrated in Fig. 2. It consists in this, that while a current of galvanism is passing through a copper wire A B, it is magnetic, it attracts iron filings and not those of copper or brass, and is capable of developing magnetism in soft iron.

Fig. 2 Fig. 2

The next important discovery, also made in 1820, by Ampère, was that two wires through which galvanic currents are passing in the same direction attract, and in the opposite direction, repel, each other. On this fact Ampère founded his celebrated theory, that magnetism consists merely in the attraction of electrical currents revolving at right angles to the line joining the two poles of the magnet. The magnetization of a bar of steel or iron, according to this theory consists in establishing within the metal by induction a series of electrical currents, all revolving in the same direction at right angles to the axis or length of the bar.

Fig. 3 Fig. 3

It was this theory which led Arago, as he states, to adopt the method of magnetizing sewing needles and pieces of steel wire, shown in Fig. 3. This method consists in transmitting a current of electricity through a helix surrounding the needle or wire to be magnetised. For the purpose of insulation the needle was enclosed in a glass tube, and the several turns of the helix were at a distance from each other to insure the passage of electricity through the whole length of the wire, or, in other words, to prevent it from seeking a shorter passage by cutting across from one spire to another. The helix employed by Arago obviously approximates the arrangement required by the theory of Ampère, in order to develop by induction the magnetism of the iron. By an attentive perusal of the original account of the experiments of Arago, it will be seen that, properly speaking, he made no electro-magnet, as has been asserted by Morse and others; his experiments were confined to the magnetism of iron filings, to sewing needles and pieces of steel wire of the diameter of a millimetre, or of about the thickness of a small knitting needle.

Fig. 4 Fig. 4

Mr. Sturgeon, in 1825, made an important step in advance of the experiments of Arago, and produced what is properly known as the electro-magnet. He bent a piece of iron wire into the form of a horseshoe, covered it with varnish to insulate it, and surrounded it with a helix, of which the spires were at a distance. When a current of galvanism was passed through the helix from a small battery of a single cup the iron wire became magnetic, and continued so during the passage of the current. When the current was interrupted the magnetism disappeared, and thus was produced the first temporary soft iron magnet.

The electro-magnet of Sturgeon is shown in Fig. 4. By comparing Figs. 3 and 4 it will be seen that the helix employed by Sturgeon was of the same kind as that used by Arago; instead however, of a straight steel wire inclosed in a tube of glass, the former employed a bent wire of soft iron. The difference in the arrangement at first sight might appear to be small, but the difference in the results produced was important, since the temporary magnetism developed in the arrangement of Sturgeon was sufficient to support a weight of several pounds, and an instrument was thus produced of value in future research.

Fig. 5 Fig. 5

The next improvement was made by myself. After reading an account of the galvanometer of Schweigger, the idea occurred to me that a much nearer approximation to the requirements of the theory of Ampère could be attained by insulating the conducting wire itself, instead of the rod to be magnetized, and by covering the whole surface of the iron with a series of coils in close contact. This was effected by insulating a long wire with silk thread, and winding this around the rod of iron in close coils from one end[Pg 28] to the other. The same principle was extended by employing a still longer insulated wire, and winding several strata of this over the first, care being taken to insure the insulation between each stratum by a covering of silk ribbon. By this arrangement the rod was surrounded by a compound helix formed of a long wire of many coils, instead of a single helix of a few coils, (Fig. 5).

In the arrangement of Arago and Sturgeon the several turns of wire were not precisely at right angles to the axis of the rod, as they should be, to produce the effect required by the theory, but slightly oblique, and therefore each tended to develop a separate magnetism not coincident with the axis of the bar. But in winding the wire over itself, the obliquity of the several turns compensated each other, and the resultant action was at right angles to the bar. The arrangement then introduced by myself was superior to those of Arago and Sturgeon, first in the greater multiplicity of turns of wire, and second in the better application of these turns to the development of magnetism. The power of the instrument with the same amount of galvanic force, was by this arrangement several times increased.

Fig. 6 Fig. 6

The maximum effect, however, with this arrangement and a single battery was not yet obtained. After a certain length of wire had been coiled upon the iron, the power diminished with a further increase of the number of turns. This was due to the increased resistance which the longer wire offered to the conduction of electricity. Two methods of improvement therefore suggested themselves. The first consisted, not in increasing the length of the coil, but in using a number of separate coils on the same piece of iron. By this arrangement the resistance to the conduction of the electricity was diminished and a greater quantity made to circulate around the iron from the same battery. The second method of producing a similar result consisted in increasing the number of elements of the battery, or, in other words, the projectile force of the electricity, which enabled it to pass through an increased number of turns of wire, and thus, by increasing the length of the wire, to develop the maximum power of the iron.

To test these principles on a larger scale, the experimental magnet was constructed, which is shown in Fig. 6. In this a number of compound helices were placed on the same bar, their ends left projecting, and so numbered that they could be all united into one long helix, or variously combined in sets of lesser length.

From a series of experiments with this and other magnets it was proved that, in order to produce the greatest amount of magnetism from a battery of a single cup, a number of helices is required; but when a compound battery is used, then one long wire must be employed, making many turns around the iron, the length of wire and consequently the number of turns being commensurate with the projectile power of the battery.

In describing the results of my experiments, the terms intensity and quantity magnets were introduced to avoid circumlocution, and were intended to be used merely in a technical sense. By the intensity magnet I designated a piece of soft iron, so surrounded with wire that its magnetic power could be called into operation by an intensity battery, and by a quantity magnet, a piece of iron so surrounded by a number of separate coils, that its magnetism could be fully developed by a quantity battery.

I was the first to point out this connection of the two kinds of the battery with the two forms of the magnet, in my paper in Silliman’s Journal, January, 1831, and clearly to state that when magnetism was to be developed by means of a compound battery, one long coil was to be employed, and when the maximum effect was to be produced by a single battery, a number of single strands were to be used.

These steps in the advance of electro-magnetism, though small, were such as to interest and astonish the scientific world. With the same battery used by Mr. Sturgeon, at least a hundred times more magnetism was produced than could have been obtained by his experiment. The developments were considered at the time of much importance in a scientific point of view, and they subsequently furnished the means by which magneto-electricity, the phenomena of dia-magnetism, and the magnetic effects on polarized light were discovered. They gave rise to the various forms of electro-magnetic machines which have since exercised the ingenuity of inventors in every part of the world, and were of immediate applicability in the introduction of the magnet to telegraphic purposes. Neither the electro-magnet of Sturgeon nor any electro-magnet ever made previous to my investigations was applicable to transmitting power to a distance.

The principles I have developed were properly appreciated by the scientific mind of Dr. Gale, and applied by him to operate Mr. Morse’s machine at a distance.

Previous to my investigations the means of developing magnetism in soft iron were imperfectly understood. The electro-magnet made by Sturgeon, and copied by Dana, of New York, was an imperfect quantity magnet, the feeble power of which was developed by a single battery. It was entirely inapplicable to a long circuit with an intensity battery, and no person possessing the requisite scientific knowledge, would have attempted to use it in that connection after reading my paper.

In sending a message to a distance, two circuits are employed, the first a long circuit through which the electricity is sent to the distant station to bring into action the second, a short one, in which is the local battery and magnet for working the machine. In order to give projectile force sufficient to send the power to a distance, it is necessary to use an intensity battery in the long circuit, and in connection with this, at the distant station, a magnet surrounded with many turns of one long wire must be employed to receive and multiply the effect of the current enfeebled by its transmission through the long conductor. In the local or short circuit either an intensity or a quantity magnet may be employed. If the first be used, then with it a compound battery will be required; and, therefore on account of the increased resistance due to the greater quantity of acid, a less amount of work will be performed by a given amount of material; and, consequently, though this arrangement is practicable it is by no means economical. In my original paper I state that the advantages of a greater conducting power, from using several wires in the quantity magnet, may, in a less degree, be obtained by substituting for them one large wire; but in this case, on account of the greater obliquity of the spires and other causes, the magnetic effect would be less. In accordance with these principles, the receiving magnet, or that which is introduced into the long circuit, consists of a horseshoe magnet surrounded with many hundred turns of a single long wire, and[Pg 33] is operated with a battery of from twelve to twenty-four elements or more, while in the local circuit it is customary to employ a battery of one or two elements with a much thicker wire and fewer turns.

It will, I think, be evident to the impartial reader that these were improvements in the electro-magnet, which first rendered it adequate to the transmission of mechanical power to a distance; and had I omitted all allusion to the telegraph in my paper, the conscientious historian of science would have awarded me some credit, however small might have been the advance which I made. Arago and Sturgeon, in the accounts of their experiments, make no mention of the telegraph, and yet their names always have been and will be associated with the invention. I briefly, however, called attention to the fact of the applicability of my experiments to the construction of the telegraph; but not being familiar with the history of the attempts made in regard to this invention, I called it “Barlow’s project,” while I ought to have stated that Mr. Barlow’s investigation merely tended to disprove the possibility of a telegraph.

I did not refer exclusively to the needle telegraph when, in my paper, I stated that the magnetic action of a current from a trough is at least not sensibly diminished by passing through a long wire. This is evident from the fact that the immediate experiment from which this deduction was made was by means of an electro-magnet and not by means of a needle galvanometer.

Fig. 7 Fig. 7

At the conclusion of the series of experiments which I described in Silliman’s Journal, there were two applications of the electro-magnet in my mind: one the production of a machine to be moved by electro-magnetism, and the other the transmission of or calling into action power at a distance. The first was carried into execution in the construction of the machine described in Silliman’s Journal, vol. xx, 1831, and for the purpose of experimenting in regard to the second, I arranged around one of the upper rooms in the Albany Academy a wire of more than a mile in length, through which I was enabled to make signals by sounding a bell, (Fig. 7.) The mechanical arrangement for effecting this object was simply a steel bar, permanently magnetized, of about ten inches in length, supported on a pivot, and placed with its north end between the two arms of a horseshoe magnet. When the latter was excited by the current, the end of the bar thus placed was attracted by one arm of the horseshoe, and repelled by the other, and was thus caused to move in a horizontal plane and its further extremity to strike a bell suitably adjusted.

I also devised a method of breaking a circuit, and thereby causing a large weight to fall. It was intended to illustrate the practicability of calling into action a great power at a distance capable of producing mechanical effects; but as a description of this was not printed, I do not place it in the same category with the experiments of which I published an account, or the facts which could be immediately deduced from my papers in Silliman’s Journal.

From a careful investigation of the history of electro-magnetism in its connection with the telegraph, the following facts may be established:

1. Previous to my investigations the means of developing magnetism in soft iron were imperfectly understood, and the electro-magnet which then existed was inapplicable to the transmission of power to a distance.

2. I was the first to prove by actual experiment that, in order to develop magnetic power at a distance, a galvanic battery of intensity must be employed to project the current through the long conductor, and that a magnet surrounded by many turns of one long wire must be used to receive this current.

3. I was the first actually to magnetize a piece of iron at a distance, and to call attention to the fact of the applicability of my experiments to the telegraph.

4. I was the first to actually sound a bell at a distance by means of the electro-magnet.

5. The principles I had developed were applied by Dr. Gale to render Morse’s machine effective at a distance.

Michael Faraday was for many years Professor of Natural Philosophy at the Royal Institution, London, where his researches did more to subdue electricity to the service of man than those of any other physicist who ever lived. “Faraday as a Discoverer,” by Professor John Tyndall (his successor) depicts a mind of the rarest ability and a character of the utmost charm. This biography is published by D. Appleton & Co., New York: the extracts which follow are from the third chapter.

In 1831 we have Faraday at the climax of his intellectual strength, forty years of age, stored with knowledge and full of original power. Through reading, lecturing, and experimenting, he had become thoroughly familiar with electrical science: he saw where light was needed and expansion possible. The phenomena of ordinary electric induction belonged, as it were, to the alphabet of his knowledge: he knew that under ordinary circumstances the presence of an electrified body was sufficient to excite, by induction, an unelectrified body. He knew that the wire which carried an electric current was an electrified body, and still that all attempts had failed to make it excite in other wires a state similar to its own.

What was the reason of this failure? Faraday never could work from the experiments of others, however clearly described. He knew well that from every experiment issues a kind of radiation, luminous, in different degrees to different minds, and he hardly trusted himself to reason upon an experiment that he had not seen. In the autumn of 1831 he began to repeat the experiments with electric currents, which, up to that time, had produced no positive result. And here, for the sake of younger inquirers, if not for the sake of us all, it is worth while to dwell for a moment on a power which Faraday possessed in an extraordinary degree. He united vast strength with perfect flexibility. His momentum was that of a river, which combines weight and directness with the ability to yield to the flexures of its bed. The intentness of his vision in any direction did not apparently diminish his power of perception in other directions; and when he attacked a subject, expecting results, he had the faculty of keeping his mind alert, so that results different from those which he expected should not escape him through pre-occupation.

He began his experiments “on the induction of electric currents” by composing a helix of two insulated wires, which were wound side by side round the same wooden cylinder. One of these wires he connected with a voltaic battery of ten cells, and the other with a sensitive galvanometer. When connection with the battery was made, and while the current flowed, no effect whatever was observed at the galvanometer. But he never accepted an experimental result, until he had applied to it the utmost power at his command. He raised his battery from ten cells to one hundred and twenty cells, but without avail. The current flowed calmly through the battery wire without producing, during its flow, any sensible result upon the galvanometer.

“During its flow,” and this was the time when an effect was expected—but here Faraday’s power of lateral vision, separating, as it were from the line of expectation, came into play—he noticed that a feeble movement of the needle always occurred at the moment when he made contact with the battery; that the needle would afterward return to its former position and remain quietly there unaffected by the flowing current. At the moment, however, when the circuit was interrupted the needle again moved, and in a direction opposed to that observed on the completion of the circuit.

This result, and others of a similar kind, led him to the conclusion “that the battery current through the one wire did in reality induce a similar current through the other; but that it continued for an instant only, and partook more of the nature of the electric wave from a common Leyden jar than of the current from a voltaic battery.” The momentary currents thus generated were called induced currents, while the current which generated them was called the inducing current. It was immediately proved that the current generated at making the circuit[Pg 10] was always opposed in direction to its generator, while that developed on the rupture of the circuit coincided in direction with the inducing current. It appeared as if the current on its first rush through the primary wire sought a purchase in the secondary one, and, by a kind of kick, impelled backward through the latter an electric wave, which subsided as soon as the primary current was fully established.

Faraday, for a time, believed that the secondary wire, though quiescent when the primary current had been once established, was not in its natural condition, its return to that condition being declared by the current observed at breaking the circuit. He called this hypothetical state of the wire the electro-tonic state: he afterwards abandoned this hypothesis, but seemed to return to it in after life. The term electro-tonic is also preserved by Professor Du Bois Reymond to express a certain electric condition of the nerves, and Professor Clerk Maxwell has ably defined and illustrated the hypothesis in the Tenth Volume of the “Transactions of the Cambridge Philosophical Society.”

The mere approach of a wire forming a closed curve to a second wire through which a voltaic current flowed was then shown by Faraday to be sufficient to arouse in the neutral wire an induced current, opposed in direction to the inducing current; the withdrawal of the wire also generated a current having the same direction as the inducing current; those currents existed only during the time of approach or withdrawal, and when neither the primary nor the secondary wire was in motion, no matter how close their proximity might be, no induced current was generated.

Faraday has been called a purely inductive philosopher. A great deal of nonsense is, I fear, uttered in this land of England about induction and deduction. Some profess to befriend the one, some the other, while the real vocation of an investigator, like Faraday, consists in the incessant marriage of both. He was at this time full of the theory of Ampère, and it cannot be doubted that numbers of his experiments were executed merely to test his deductions from that theory. Starting from the discovery of Oersted, the celebrated French philosopher had shown that all the phenomena of magnetism then known might be reduced to the mutual attractions and repulsions of electric currents. Magnetism had been produced from electricity, and Faraday, who all his life long entertained a strong belief in such reciprocal actions, now attempted to effect the evolution of electricity from magnetism. Round a welded iron ring he placed two distinct coils of covered wire, causing the coils to occupy opposite halves of the ring. Connecting the ends of one of the coils with a galvanometer, he found that the moment the ring was magnetized, by sending a current through the other coil, the galvanometer needle whirled round four or five times in succession. The action, as before, was that of a pulse, which vanished immediately. On interrupting the current, a whirl of the needle in the opposite direction occurred. It was only during the time of magnetization or demagnetization that these effects were produced. The induced currents declared a change of condition only, and they vanished the moment the act of magnetization or demagnetization was complete.

The effects obtained with the welded ring were also obtained with straight bars of iron. Whether the bars were magnetized by the electric current, or were excited by the contact of permanent steel magnets, induced currents were always generated during the rise, and during the subsidence of the magnetism. The use of iron was then abandoned, and the same effects were obtained by merely thrusting a permanent steel magnet into a coil of wire. A rush of electricity through the coil accompanied the insertion of the magnet; an equal rush in the opposite direction accompanied its withdrawal. The precision with which Faraday describes these results, and the completeness with which he defined the boundaries of his facts, are wonderful. The magnet, for example, must not be passed quite through the coil, but only half through, for if passed wholly through, the needle is stopped as by a blow, and then he shows how this blow results from a reversal of the electric wave in the helix. He next operated with the powerful permanent magnet of the Royal Society, and obtained with it, in an exalted degree, all the foregoing phenomena.

And now he turned the light of these discoveries upon the darkest physical phenomenon of that day. Arago had discovered in 1824, that a disk of non-magnetic metal had the power of bringing a vibrating magnetic needle suspended over it rapidly to rest; and that on causing the disk to rotate the magnetic needle rotated along with it. When both were quiescent, there was not the slightest measurable attraction or repulsion exerted between the needle and the disk; still when in motion the disk was competent to drag after it, not only a light needle, but a heavy magnet. The question had been probed and investigated with admirable skill by both Arago and Ampère, and Poisson had published a theoretic memoir on the subject; but no cause could be assigned for so extraordinary an action. It had also been examined in this country by two celebrated men, Mr. Babbage and Sir John Herschel; but it still remained a mystery. Faraday always recommended the suspension of judgment in cases of doubt. “I have always admired,” he says, “the prudence and philosophical reserve shown by M. Arago in resisting the temptations to give a theory of the effect he had discovered, so long as he could not devise one which was perfect in its application, and in refusing to assent to the imperfect theories of others.” Now, however, the time for theory had come. Faraday saw mentally the rotating disk, under the operation of the magnet, flooded with his induced currents, and from the known laws of interaction between currents and magnets he hoped to deduce the motion observed by Arago. That hope he realized, showing by actual experiment that when his disk rotated currents passed through it, their position and direction being such as must, in accordance with the established laws of electro-magnetic action, produce the observed rotation.

Introducing the edge of his disk between the poles of the large horseshoe magnet of the Royal Society, and connecting the axis and the edge of the disk, each by a wire with a galvanometer, he obtained, when the disk was turned round, a constant flow of electricity. The direction of the current was determined by the direction of the motion, the current being reversed when the rotation was reversed. He now states the law which rules the production of currents in both disks and wires, and in so doing uses, for the first time, a phrase which has since become famous. When iron filings are scattered over a magnet, the particles of iron arrange themselves in certain determined lines called magnetic curves. In 1831, Faraday for the first time called these curves “lines of magnetic force;” and he showed that to produce induced currents neither approach to nor withdrawal from a magnetic source, or centre, or pole, was essential, but that it was only necessary to cut appropriately the lines of magnetic force. Faraday’s first paper on Magneto-electric Induction, which I have here endeavoured to condense, was read before the Royal Society on the 24th of November, 1831.

On January 12, 1832, he communicated to the Royal Society a second paper on “Terrestrial Magneto-electric Induction,” which was chosen as the Bakerian Lecture for the year. He placed a bar of iron in a coil of wire, and lifting the bar into the direction of the dipping needle, he excited by this action a current in the coil. On reversing the bar, a current in the opposite direction rushed through the wire. The same effect was produced, when, on holding the helix in the line of dip, a bar of iron was thrust into it. Here, however, the earth acted on the coil through the intermediation of the bar of iron. He abandoned the bar and simply set a copper-plate spinning in a horizontal plane; he knew that the earth’s lines of magnetic force then crossed the plate at an angle of about 70°. When the plate spun round, the lines of force were intersected and induced currents generated, which produced their proper effect when carried from the plate to the galvanometer. “When the plate was in the magnetic meridian, or in any other plane coinciding with the magnetic dip, then its rotation produced no effect upon the galvanometer.”

At the suggestion of a mind fruitful in suggestions of a profound and philosophic character—I mean that of Sir John Herschel—Mr. Barlow, of Woolwich, had experimented with a rotating iron shell. Mr. Christie had also performed an elaborate series of experiments on a rotating iron disk. Both of them had found that when in rotation the body exercised a peculiar action upon the magnetic needle, deflecting it in a manner which was not observed during quiescence; but neither of them was aware at the time of the agent which produced this extraordinary deflection. They ascribed it to some change in the magnetism of the iron shell and disk.

But Faraday at once saw that his induced currents must come into play here, and he immediately obtained them from an iron disk. With a hollow brass ball, moreover, he produced the effects obtained by Mr. Barlow. Iron was in no way necessary: the only condition of success was that the rotating body should be of a character to admit of the formation of currents in its substance: it must, in other words, be a conductor of electricity. The higher the conducting power the more copious were the currents. He now passes from his little brass globe to the globe of the earth. He plays like a magician with the earth’s magnetism. He sees the invisible lines along which its magnetic action is exerted and sweeping his wand across these lines evokes this new power. Placing a simple loop of wire round a magnetic needle he bends its upper portion to the west: the north pole of the needle immediately swerves to the east: he bends his loop to the east, and the north poles moves to the west. Suspending a common bar magnet in a vertical position, he causes it to spin round its own axis. Its pole being connected with one end of a galvanometer wire, and its equator with the other end, electricity rushes round the galvanometer from the rotating magnet. He remarks upon the “singular independence” of the magnetism and the body of the magnet which carries it. The steel behaves as if it were isolated from its own magnetism.

And then his thoughts suddenly widen, and he asks himself whether the rotating earth does not generate induced currents as it turns round its axis from west to east. In his experiment with the twirling magnet the galvanometer wire remained at rest; one portion of the circuit was in motion relatively to another portion. But in the case of the twirling planet the galvanometer wire would necessarily be carried along with the earth; there would be no relative motion. What must be the consequence? Take the case of a telegraph wire with its two terminal plates dipped into the earth, and suppose the wire to lie in the magnetic meridian. The ground underneath the wire is influenced like the wire itself by the earth’s rotation; if a current from south to north be generated in the wire, a similar current from south to north would be generated in the earth under the wire; these currents would run against the same terminal plates, and thus neutralize each other.

This inference appears inevitable, but his profound vision perceived its possible invalidity. He saw that it was at least possible that the difference of conducting power between the earth[Pg 18] and the wire might give one an advantage over the other, and that thus a residual or differential current might be obtained. He combined wires of different materials, and caused them to act in opposition to each other, but found the combination ineffectual. The more copious flow in the better conductor was exactly counterbalanced by the resistance of the worst. Still, though experiment was thus emphatic, he would clear his mind of all discomfort by operating on the earth itself. He went to the round lake near Kensington Palace, and stretched four hundred and eighty feet of copper wire, north and south, over the lake, causing plates soldered to the wire at its ends to dip into the water. The copper wire was severed at the middle, and the severed ends connected with a galvanometer. No effect whatever was observed. But though quiescent water gave no effect, moving water might. He therefore worked at London Bridge for three days during the ebb and flow of the tide, but without any satisfactory result. Still he urges, “Theoretically it seems a necessary consequence, that where water is flowing there electric currents should be formed. If a line be imagined passing from Dover to Calais through the sea, and returning through the land, beneath the water, to Dover, it traces out a circuit of conducting matter one part of which, when the water moves up or down the channel, is cutting the magnetic curves of the earth, while the other is relatively at rest…. There is every[Pg 19] reason to believe that currents do run in the general direction of the circuit described, either one way or the other, according as the passage of the waters is up or down the channel.” This was written before the submarine cable was thought of, and he once informed me that actual observation upon that cable had been found to be in accordance with his theoretic deduction.

Three years subsequent to the publication of these researches, that is to say on January 29, 1835, Faraday read before the Royal Society a paper “On the influence by induction of an electric current upon itself.” A shock and spark of a peculiar character had been observed by a young man named William Jenkin, who must have been a youth of some scientific promise, but who, as Faraday once informed me, was dissuaded by his own father from having anything to do with science. The investigation of the fact noticed by Mr. Jenkin led Faraday to the discovery of the extra current, or the current induced in the primary wire itself at the moments of making and breaking contact, the phenomena of which he described and illustrated in the beautiful and exhaustive paper referred to.

Seven and thirty years have passed since the discovery of magneto-electricity; but, if we except the extra current, until quite recently nothing of moment was added to the subject. Faraday entertained the opinion that the discoverer of a great law or principle had a right to the “spoils”—this was his term—arising from its[Pg 20] illustration; and guided by the principle he had discovered, his wonderful mind, aided by his wonderful ten fingers, overran in a single autumn this vast domain, and hardly left behind him the shred of a fact to be gathered by his successors.

And here the question may arise in some minds, What is the use of it all? The answer is, that if man’s intellectual nature thirsts for knowledge then knowledge is useful because it satisfies this thirst. If you demand practical ends, you must, I think, expand your definition of the term practical, and make it include all that elevates and enlightens the intellect, as well as all that ministers to the bodily health and comfort of men. Still, if needed, an answer of another kind might be given to the question “what is its use?” As far as electricity has been applied for medical purposes, it has been almost exclusively Faraday’s electricity. You have noticed those lines of wire which cross the streets of London. It is Faraday’s currents that speed from place to place through these wires. Approaching the point of Dungeness, the mariner sees an unusually brilliant light, and from the noble lighthouse of La Hève the same light flashes across the sea. These are Faraday’s sparks exalted by suitable machinery to sun-like splendour. At the present moment the Board of Trade and the Brethren of the Trinity House, as well as the Commissioners of Northern Lights, are contemplating the introduction of the Magneto-electric Light at numerous points upon our coasts; and future generations will be able to refer to those guiding stars in answer to the question, what has been the practical use of the labours of Faraday? But I would again emphatically say, that his work needs no justification, and that if he had allowed his vision to be disturbed by considerations regarding the practical use of his discoveries, those discoveries would never have been made by him. “I have rather,” he writes in 1831, “been desirous of discovering new facts and new relations dependent on magneto-electric induction, than of exalting the force of those already obtained; being assured that the latter would find their full development hereafter.”

In 1817, when lecturing before a private society in London on the element chlorine, Faraday thus expresses himself with reference to this question of utility. “Before leaving this subject, I will point out the history of this substance as an answer to those who are in the habit of saying to every new fact, ‘What is its use?’ Dr. Franklin says to such, ‘What is the use of an infant?’ The answer of the experimentalist is, ‘Endeavour to make it useful.’ When Scheele discovered this substance, it appeared to have no use; it was in its infancy and useless state, but having grown up to maturity, witness its powers, and see what endeavours to make it useful have done.”

Edison and His Life

THOMAS ALVA EDISON was born at Milan Ohio, February 11, 1847. The State that rivals Virginia as a “Mother of Presidents” has evidently other titles to distinction of the same nature. For picturesque detail it would not be easy to find any story excelling that of the Edison family before it reached the Western Reserve. The story epitomizes American idealism, restlessness, freedom of individual opinion, and ready adjustment to the surrounding conditions of pioneer life. The ancestral Edisons who came over from Holland, as nearly as can be determined, in 1730, were descendants of extensive millers on the Zuyder Zee, and took up patents of land along the Passaic River, New Jersey, close to the home that Mr. Edison established in the Orange Mountains a hundred and sixty years later. They landed at Elizabethport, New Jersey, and first settled near Caldwell in that State, where some graves of the family may still be found. President Cleveland was born in that quiet hamlet. It is a curious fact that in the Edison family the pronunciation of the name has always been with the long “e” sound, as it would naturally be in the Dutch language. The family prospered and must have enjoyed public confidence, for we find the name of Thomas Edison, as a bank official on Manhattan Island, signed to Continental currency in 1778. According to the family records this Edison, great-grandfather of Thomas Alva, reached the extreme old age of 104 years. But all was not well, and, as has happened so often before, the politics of father and son were violently different. The Loyalist movement that took to Nova Scotia so many Americans after the War of Independence carried with it John, the son of this stalwart Continental. Thus it came about that Samuel Edison, son of John, was born at Digby, Nova Scotia, in 1804. Seven years later John Edison who, as a Loyalist or United Empire emigrant, had become entitled under the laws of Canada to a grant of six hundred acres of land, moved westward to take possession of this property. He made his way through the State of New York in wagons drawn by oxen to the remote and primitive township of Bayfield, in Upper Canada, on Lake Huron. Although the journey occurred in balmy June, it was necessarily attended with difficulty and privation; but the new home was situated in good farming country, and once again this interesting nomadic family settled down.

John Edison moved from Bayfield to Vienna, Ontario, on the northern bank of Lake Erie. Mr. Edison supplies an interesting reminiscence of the old man and his environment in those early Canadian days. “When I was five years old I was taken by my father and mother on a visit to Vienna. We were driven by carriage from Milan, Ohio, to a railroad, then to a port on Lake Erie, thence by a canal-boat in a tow of several to Port Burwell, in Canada, across the lake, and from there we drove to Vienna, a short distance away. I remember my grandfather perfectly as he appeared, at 102 years of age, when he died. In the middle of the day he sat under a large tree in front of the house facing a well-travelled road. His head was covered completely with a large quantity of very white hair, and he chewed tobacco incessantly, nodding to friends as they passed by. He used a very large cane, and walked from the chair to the house, resenting any assistance. I viewed him from a distance, and could never get very close to him. I remember some large pipes, and especially a molasses jug, a trunk, and several other things that came from Holland.”

John Edison was long-lived, like his father, and reached the ripe old age of 102, leaving his son Samuel charged with the care of the family destinies, but with no great burden of wealth. Little is known of the early manhood of this father of T. A. Edison until we find him keeping a hotel at Vienna, marrying a school-teacher there (Miss Nancy Elliott, in 1828), and taking a lively share in the troublous politics of the time. He was six feet in height, of great bodily vigor, and of such personal dominance of character that he became a captain of the insurgent forces rallying under the banners of Papineau and Mackenzie. The opening years of Queen Victoria’s reign witnessed a belated effort in Canada to emphasize the principle that there should not be taxation without representation; and this descendant of those who had left the United States from disapproval of such a doctrine, flung himself headlong into its support.

It has been said of Earl Durham, who pacified Canada at this time and established the present system of government, that he made a country and marred a career. But the immediate measures of repression enforced before a liberal policy was adopted were sharp and severe, and Samuel Edison also found his own career marred on Canadian soil as one result of the Durham administration. Exile to Bermuda with other insurgents was not so attractive as the perils of a flight to the United States. A very hurried departure was effected in secret from the scene of trouble, and there are romantic traditions of his thrilling journey of one hundred and eighty-two miles toward safety, made almost entirely without food or sleep, through a wild country infested with Indians of unfriendly disposition. Thus was the Edison family repatriated by a picturesque political episode, and the great inventor given a birthplace on American soil, just as was Benjamin Franklin when his father came from England to Boston. Samuel Edison left behind him, however, in Canada, several brothers, all of whom lived to the age of ninety or more, and from whom there are descendants in the region.

After some desultory wanderings for a year or two along the shores of Lake Erie, among the prosperous towns then springing up, the family, with its Canadian home forfeited, and in quest of another resting-place, came to Milan, Ohio, in 1842. That pretty little village offered at the moment many attractions as a possible Chicago. The railroad system of Ohio was still in the future, but the Western Reserve had already become a vast wheat-field, and huge quantities of grain from the central and northern counties sought shipment to Eastern ports. The Huron River, emptying into Lake Erie, was navigable within a few miles of the village, and provided an admirable outlet. Large granaries were established, and proved so successful that local capital was tempted into the project of making a tow-path canal from Lockwood Landing all the way to Milan itself. The quaint old Moravian mission and quondam Indian settlement of one hundred inhabitants found itself of a sudden one of the great grain ports of the world, and bidding fair to rival Russian Odessa. A number of grain warehouses, or primitive elevators, were built along the bank of the canal, and the produce of the region poured in immediately, arriving in wagons drawn by four or six horses with loads of a hundred bushels. No fewer than six hundred wagons came clattering in, and as many as twenty sail vessels were loaded with thirty-five thousand bushels of grain, during a single day. The canal was capable of being navigated by craft of from two hundred to two hundred and fifty tons burden, and the demand for such vessels soon led to the development of a brisk ship-building industry, for which the abundant forests of the region supplied the necessary lumber. An evidence of the activity in this direction is furnished by the fact that six revenue cutters were launched at this port in these brisk days of its prime.

Samuel Edison, versatile, buoyant of temper, and ever optimistic, would thus appear to have pitched his tent with shrewd judgment. There was plenty of occupation ready to his hand, and more than one enterprise received his attention; but he devoted his energies chiefly to the making of shingles, for which there was a large demand locally and along the lake. Canadian lumber was used principally in this industry. The wood was imported in “bolts” or pieces three feet long. A bolt made two shingles; it was sawn asunder by hand, then split and shaved. None but first-class timber was used, and such shingles outlasted far those made by machinery with their cross-grain cut. A house in Milan, on which some of those shingles were put in 1844, was still in excellent condition forty-two years later. Samuel Edison did well at this occupation, and employed several men, but there were other outlets from time to time for his business activity and speculative disposition.

Edison’s mother was an attractive and highly educated woman, whose influence upon his disposition and intellect has been profound and lasting. She was born in Chenango County, New York, in 1810, and was the daughter of the Rev. John Elliott, a Baptist minister and descendant of an old Revolutionary soldier, Capt. Ebenezer Elliott, of Scotch descent. The old captain was a fine and picturesque type. He fought all through the long War of Independence—seven years—and then appears to have settled down at Stonington, Connecticut. There, at any rate, he found his wife, “grandmother Elliott,” who was Mercy Peckham, daughter of a Scotch Quaker. Then came the residence in New York State, with final removal to Vienna, for the old soldier, while drawing his pension at Buffalo, lived in the little Canadian town, and there died, over 100 years old. The family was evidently one of considerable culture and deep religious feeling, for two of Mrs. Edison’s uncles and two brothers were also in the same Baptist ministry. As a young woman she became a teacher in the public high school at Vienna, and thus met her husband, who was residing there. The family never consisted of more than three children, two boys and a girl. A trace of the Canadian environment is seen in the fact that Edison’s elder brother was named William Pitt, after the great English statesman. Both his brother and the sister exhibited considerable ability. William Pitt Edison as a youth was so clever with his pencil that it was proposed to send him to Paris as an art student. In later life he was manager of the local street railway lines at Port Huron, Michigan, in which he was heavily interested. He also owned a good farm near that town, and during the ill-health at the close of his life, when compelled to spend much of the time indoors, he devoted himself almost entirely to sketching. It has been noted by intimate observers of Thomas A. Edison that in discussing any project or new idea his first impulse is to take up any piece of paper available and make drawings of it. His voluminous note-books are a mass of sketches. Mrs-Tannie Edison Bailey, the sister, had, on the other hand, a great deal of literary ability, and spent much of her time in writing.

The great inventor, whose iron endurance and stern will have enabled him to wear down all his associates by work sustained through arduous days and sleepless nights, was not at all strong as a child, and was of fragile appearance. He had an abnormally large but well-shaped head, and it is said that the local doctors feared he might have brain trouble. In fact, on account of his assumed delicacy, he was not allowed to go to school for some years, and even when he did attend for a short time the results were not encouraging—his mother being hotly indignant upon hearing that the teacher had spoken of him to an inspector as “addled.” The youth was, indeed, fortunate far beyond the ordinary in having a mother at once loving, well-informed, and ambitious, capable herself, from her experience as a teacher, of undertaking and giving him an education better than could be secured in the local schools of the day. Certain it is that under this simple regime studious habits were formed and a taste for literature developed that have lasted to this day. If ever there was a man who tore the heart out of books it is Edison, and what has once been read by him is never forgotten if useful or worthy of submission to the test of experiment.

But even thus early the stronger love of mechanical processes and of probing natural forces manifested itself. Edison has said that he never saw a statement in any book as to such things that he did not involuntarily challenge, and wish to demonstrate as either right or wrong. As a mere child the busy scenes of the canal and the grain warehouses were of consuming interest, but the work in the ship-building yards had an irresistible fascination. His questions were so ceaseless and innumerable that the penetrating curiosity of an unusually strong mind was regarded as deficiency in powers of comprehension, and the father himself, a man of no mean ingenuity and ability, reports that the child, although capable of reducing him to exhaustion by endless inquiries, was often spoken of as rather wanting in ordinary acumen. This apparent dulness is, however, a quite common incident to youthful genius.

The constructive tendencies of this child of whom his father said once that he had never had any boyhood days in the ordinary sense, were early noted in his fondness for building little plank roads out of the debris of the yards and mills. His extraordinarily retentive memory was shown in his easy acquisition of all the songs of the lumber gangs and canal men before he was five years old. One incident tells how he was found one day in the village square copying laboriously the signs of the stores. A highly characteristic event at the age of six is described by his sister. He had noted a goose sitting on her eggs and the result. One day soon after, he was missing. By-and-by, after an anxious search, his father found him sitting in a nest he had made in the barn, filled with goose-eggs and hens’ eggs he had collected, trying to hatch them out.

One of Mr. Edison’s most vivid recollections goes back to 1850, when as a child three of four years old he saw camped in front of his home six covered wagons, “prairie schooners,” and witnessed their departure for California. The great excitement over the gold discoveries was thus felt in Milan, and these wagons, laden with all the worldly possessions of their owners, were watched out of sight on their long journey by this fascinated urchin, whose own discoveries in later years were to tempt many other argonauts into the auriferous realms of electricity.

Another vivid memory of this period concerns his first realization of the grim mystery of death. He went off one day with the son of the wealthiest man in the town to bathe in the creek. Soon after they entered the water the other boy disappeared. Young Edison waited around the spot for half an hour or more, and then, as it was growing dark, went home puzzled and lonely, but silent as to the occurrence. About two hours afterward, when the missing boy was being searched for, a man came to the Edison home to make anxious inquiry of the companion with whom he had last been seen. Edison told all the circumstances with a painful sense of being in some way implicated. The creek was at once dragged, and then the body was recovered.

Edison had himself more than one narrow escape. Of course he fell in the canal and was nearly drowned; few boys in Milan worth their salt omitted that performance. On another occasion he encountered a more novel peril by falling into the pile of wheat in a grain elevator and being almost smothered. Holding the end of a skate-strap for another lad to shorten with an axe, he lost the top of a finger. Fire also had its perils. He built a fire in a barn, but the flames spread so rapidly that, although he escaped himself, the barn was wholly destroyed, and he was publicly whipped in the village square as a warning to other youths. Equally well remembered is a dangerous encounter with a ram that attacked him while he was busily engaged digging out a bumblebee’s nest near an orchard fence. The animal knocked him against the fence, and was about to butt him again when he managed to drop over on the safe side and escape. He was badly hurt and bruised, and no small quantity of arnica was needed for his wounds.

Meantime little Milan had reached the zenith of its prosperity, and all of a sudden had been deprived of its flourishing grain trade by the new Columbus, Sandusky & Hocking Railroad; in fact, the short canal was one of the last efforts of its kind in this country to compete with the new means of transportation. The bell of the locomotive was everywhere ringing the death-knell of effective water haulage, with such dire results that, in 1880, of the 4468 miles of American freight canal, that had cost $214,000,000, no fewer than 1893 miles had been abandoned, and of the remaining 2575 miles quite a large proportion was not paying expenses. The short Milan canal suffered with the rest, and to-day lies well-nigh obliterated, hidden in part by vegetable gardens, a mere grass-grown depression at the foot of the winding, shallow valley. Other railroads also prevented any further competition by the canal, for a branch of the Wheeling & Lake Erie now passes through the village, while the Lake Shore & Michigan Southern runs a few miles to the south.

The owners of the canal soon had occasion to regret that they had disdained the overtures of enterprising railroad promoters desirous of reaching the village, and the consequences of commercial isolation rapidly made themselves felt. It soon became evident to Samuel Edison and his wife that the cozy brick home on the bluff must be given up and the struggle with fortune resumed elsewhere. They were well-to-do, however, and removing, in 1854, to Port Huron, Michigan, occupied a large colonial house standing in the middle of an old Government fort reservation of ten acres overlooking the wide expanse of the St. Clair River just after it leaves Lake Huron. It was in many ways an ideal homestead, toward which the family has always felt the strongest attachment, but the association with Milan has never wholly ceased. The old house in which Edison was born is still occupied (in 1910) by Mr. S. O. Edison, a half-brother of Edison’s father, and a man of marked inventive ability. He was once prominent in the iron-furnace industry of Ohio, and was for a time associated in the iron trade with the father of the late President McKinley. Among his inventions may be mentioned a machine for making fuel from wheat straw, and a smoke-consuming device.

This birthplace of Edison remains the plain, substantial little brick house it was originally: one-storied, with rooms finished on the attic floor. Being built on the hillside, its basement opens into the rear yard. It was at first heated by means of open coal grates, which may not have been altogether adequate in severe winters, owing to the altitude and the north-eastern exposure, but a large furnace is one of the more modern changes. Milan itself is not materially unlike the smaller Ohio towns of its own time or those of later creation, but the venerable appearance of the big elm-trees that fringe the trim lawns tells of its age. It is, indeed, an extremely neat, snug little place, with well-kept homes, mostly of frame construction, and flagged streets crossing each other at right angles. There are no poor—at least, everybody is apparently well-to-do. While a leisurely atmosphere pervades the town, few idlers are seen. Some of the residents are engaged in local business; some are occupied in farming and grape culture; others are employed in the iron-works near-by, at Norwalk. The stores and places of public resort are gathered about the square, where there is plenty of room for hitching when the Saturday trading is done at that point, at which periods the fitful bustle recalls the old wheat days when young Edison ran with curiosity among the six and eight horse teams that had brought in grain. This square is still covered with fine primeval forest trees, and has at its centre a handsome soldiers’ monument of the Civil War, to which four paved walks converge. It is an altogether pleasant and unpretentious town, which cherishes with no small amount of pride its association with the name of Thomas Alva Edison.

In view of Edison’s Dutch descent, it is rather singular to find him with the name of Alva, for the Spanish Duke of Alva was notoriously the worst tyrant ever known to the Low Countries, and his evil deeds occupy many stirring pages in Motley’s famous history. As a matter of fact, Edison was named after Capt. Alva Bradley, an old friend of his father, and a celebrated ship-owner on the Lakes. Captain Bradley died a few years ago in wealth, while his old associate, with equal ability for making money, was never able long to keep it (differing again from the Revolutionary New York banker from whom his son’s other name, “Thomas,” was taken).

By Frank Lewis Dyer
General Counsel For The Edison Laboratory And Allied Interests
Thomas Commerford Martin
Ex-President Of The American Institute Of Electrical Engineers


A VERY great invention has its own dramatic history. Episodes full of human interest attend its development. The periods of weary struggle, the daring adventure along unknown paths, the clash of rival claimants, are closely similar to those which mark the revelation and subjugation of a new continent. At the close of the epoch of discovery it is seen that mankind as a whole has made one more great advance; but in the earlier stages one watched chiefly the confused vicissitudes of fortune of the individual pioneers. The great modern art of telephony has had thus in its beginnings, its evolution, and its present status as a universal medium of intercourse, all the elements of surprise, mystery, swift creation of wealth, tragic interludes, and colossal battle that can appeal to the imagination and hold public attention. And in this new electrical industry, in laying its essential foundations, Edison has again been one of the dominant figures.

As far back as 1837, the American, Page, discovered the curious fact that an iron bar, when magnetized and demagnetized at short intervals of time, emitted sounds due to the molecular disturbances in the mass. Philipp Reis, a simple professor in Germany, utilized this principle in the construction of apparatus for the transmission of sound; but in the grasp of the idea he was preceded by Charles Bourseul, a young French soldier in Algeria, who in 1854, under the title of “Electrical Telephony,” in a Parisian illustrated paper, gave a brief and lucid description as follows:

“We know that sounds are made by vibrations, and are made sensible to the ear by the same vibrations, which are reproduced by the intervening medium. But the intensity of the vibrations diminishes very rapidly with the distance; so that even with the aid of speaking-tubes and trumpets it is impossible to exceed somewhat narrow limits. Suppose a man speaks near a movable disk sufficiently flexible to lose none of the vibrations of the voice; that this disk alternately makes and breaks the connection with a battery; you may have at a distance another disk which will simultaneously execute the same vibrations…. Any one who is not deaf and dumb may use this mode of transmission, which would require no apparatus except an electric battery, two vibrating disks, and a wire.”

This would serve admirably for a portrayal of the Bell telephone, except that it mentions distinctly the use of the make-and-break method (i. e., where the circuit is necessarily opened and closed as in telegraphy, although, of course, at an enormously higher rate), which has never proved practical.

So far as is known Bourseul was not practical enough to try his own suggestion, and never made a telephone. About 1860, Reis built several forms of electrical telephonic apparatus, all imitating in some degree the human ear, with its auditory tube, tympanum, etc., and examples of the apparatus were exhibited in public not only in Germany, but in England. There is a variety of testimony to the effect that not only musical sounds, but stray words and phrases, were actually transmitted with mediocre, casual success. It was impossible, however, to maintain the devices in adjustment for more than a few seconds, since the invention depended upon the make-and-break principle, the circuit being made and broken every time an impulse-creating sound went through it, causing the movement of the diaphragm on which the sound-waves impinged. Reis himself does not appear to have been sufficiently interested in the marvellous possibilities of the idea to follow it up—remarking to the man who bought his telephonic instruments and tools that he had shown the world the way. In reality it was not the way, although a monument erected to his memory at Frankfort styles him the inventor of the telephone. As one of the American judges said, in deciding an early litigation over the invention of the telephone, a hundred years of Reis would not have given the world the telephonic art for public use. Many others after Reis tried to devise practical make-and-break telephones, and all failed; although their success would have rendered them very valuable as a means of fighting the Bell patent. But the method was a good starting-point, even if it did not indicate the real path. If Reis had been willing to experiment with his apparatus so that it did not make-and-break, he would probably have been the true father of the telephone, besides giving it the name by which it is known. It was not necessary to slam the gate open and shut. All that was required was to keep the gate closed, and rattle the latch softly. Incidentally it may be noted that Edison in experimenting with the Reis transmitter recognized at once the defect caused by the make-and-break action, and sought to keep the gap closed by the use, first, of one drop of water, and later of several drops. But the water decomposed, and the incurable defect was still there.

The Reis telephone was brought to America by Dr. P. H. Van der Weyde, a well-known physicist in his day, and was exhibited by him before a technical audience at Cooper Union, New York, in 1868, and described shortly after in the technical press. The apparatus attracted attention, and a set was secured by Prof. Joseph Henry for the Smithsonian Institution. There the famous philosopher showed and explained it to Alexander Graham Bell, when that young and persevering Scotch genius went to get help and data as to harmonic telegraphy, upon which he was working, and as to transmitting vocal sounds. Bell took up immediately and energetically the idea that his two predecessors had dropped—and reached the goal. In 1875 Bell, who as a student and teacher of vocal physiology had unusual qualifications for determining feasible methods of speech transmission, constructed his first pair of magneto telephones for such a purpose. In February of 1876 his first telephone patent was applied for, and in March it was issued. The first published account of the modern speaking telephone was a paper read by Bell before the American Academy of Arts and Sciences in Boston in May of that year; while at the Centennial Exposition at Philadelphia the public first gained any familiarity with it. It was greeted at once with scientific acclaim and enthusiasm as a distinctly new and great invention, although at first it was regarded more as a scientific toy than as a commercially valuable device.

By an extraordinary coincidence, the very day that Bell’s application for a patent went into the United States Patent Office, a caveat was filed there by Elisha Gray, of Chicago, covering the specific idea of transmitting speech and reproducing it in a telegraphic circuit “through an instrument capable of vibrating responsively to all the tones of the human voice, and by which they are rendered audible.” Out of this incident arose a struggle and a controversy whose echoes are yet heard as to the legal and moral rights of the two inventors, the assertion even being made that one of the most important claims of Gray, that on a liquid battery transmitter, was surreptitiously “lifted” into the Bell application, then covering only the magneto telephone. It was also asserted that the filing of the Gray caveat antedated by a few hours the filing of the Bell application. All such issues when brought to the American courts were brushed aside, the Bell patent being broadly maintained in all its remarkable breadth and fullness, embracing an entire art; but Gray was embittered and chagrined, and to the last expressed his belief that the honor and glory should have been his. The path of Gray to the telephone was a natural one. A Quaker carpenter who studied five years at Oberlin College, he took up electrical invention, and brought out many ingenious devices in rapid succession in the telegraphic field, including the now universal needle annunciator for hotels, etc., the useful telautograph, automatic self-adjusting relays, private-line printers—leading up to his famous “harmonic” system. This was based upon the principle that a sound produced in the presence of a reed or tuning-fork responding to the sound, and acting as the armature of a magnet in a closed circuit, would, by induction, set up electric impulses in the circuit and cause a distant magnet having a similarly tuned armature to produce the same tone or note. He also found that over the same wire at the same time another series of impulses corresponding to another note could be sent through the agency of a second set of magnets without in any way interfering with the first series of impulses. Building the principle into apparatus, with a keyboard and vibrating “reeds” before his magnets, Doctor Gray was able not only to transmit music by his harmonic telegraph, but went so far as to send nine different telegraph messages at the same instant, each set of instruments depending on its selective note, while any intermediate office could pick up the message for itself by simply tuning its relays to the keynote required. Theoretically the system could be split up into any number of notes and semi-tones. Practically it served as the basis of some real telegraphic work, but is not now in use. Any one can realize, however, that it did not take so acute and ingenious a mind very long to push forward to the telephone, as a dangerous competitor with Bell, who had also, like Edison, been working assiduously in the field of acoustic and multiple telegraphs. Seen in the retrospect, the struggle for the goal at this moment was one of the memorable incidents in electrical history.

Among the interesting papers filed at the Orange Laboratory is a lithograph, the size of an ordinary patent drawing, headed “First Telephone on Record.” The claim thus made goes back to the period when all was war, and when dispute was hot and rife as to the actual invention of the telephone. The device shown, made by Edison in 1875, was actually included in a caveat filed January 14, 1876, a month before Bell or Gray. It shows a little solenoid arrangement, with one end of the plunger attached to the diaphragm of a speaking or resonating chamber. Edison states that while the device is crudely capable of use as a magneto telephone, he did not invent it for transmitting speech, but as an apparatus for analyzing the complex waves arising from various sounds. It was made in pursuance of his investigations into the subject of harmonic telegraphs. He did not try the effect of sound-waves produced by the human voice until Bell came forward a few months later; but he found then that this device, made in 1875, was capable of use as a telephone. In his testimony and public utterances Edison has always given Bell credit for the discovery of the transmission of articulate speech by talking against a diaphragm placed in front of an electromagnet; but it is only proper here to note, in passing, the curious fact that he had actually produced a device that COULD talk, prior to 1876, and was therefore very close to Bell, who took the one great step further. A strong characterization of the value and importance of the work done by Edison in the development of the carbon transmitter will be found in the decision of Judge Brown in the United States Circuit Court of Appeals, sitting in Boston, on February 27, 1901, declaring void the famous Berliner patent of the Bell telephone system.

Bell’s patent of 1876 was of an all-embracing character, which only the make-and-break principle, if practical, could have escaped. It was pointed out in the patent that Bell discovered the great principle that electrical undulations induced by the vibrations of a current produced by sound-waves can be represented graphically by the same sinusoidal curve that expresses the original sound vibrations themselves; or, in other words, that a curve representing sound vibrations will correspond precisely to a curve representing electric impulses produced or generated by those identical sound vibrations—as, for example, when the latter impinge upon a diaphragm acting as an armature of an electromagnet, and which by movement to and fro sets up the electric impulses by induction. To speak plainly, the electric impulses correspond in form and character to the sound vibration which they represent. This reduced to a patent “claim” governed the art as firmly as a papal bull for centuries enabled Spain to hold the Western world. The language of the claim is: “The method of and apparatus for transmitting vocal or other sounds telegraphically as herein described, by causing electrical undulations similar in form to the vibrations of the air accompanying the said vocal or other sounds substantially as set forth.” It was a long time, however, before the inclusive nature of this grant over every possible telephone was understood or recognized, and litigation for and against the patent lasted during its entire life. At the outset, the commercial value of the telephone was little appreciated by the public, and Bell had the greatest difficulty in securing capital; but among far-sighted inventors there was an immediate “rush to the gold fields.” Bell’s first apparatus was poor, the results being described by himself as “unsatisfactory and discouraging,” which was almost as true of the devices he exhibited at the Philadelphia Centennial. The new-comers, like Edison, Berliner, Blake, Hughes, Gray, Dolbear, and others, brought a wealth of ideas, a fund of mechanical ingenuity, and an inventive ability which soon made the telephone one of the most notable gains of the century, and one of the most valuable additions to human resources. The work that Edison did was, as usual, marked by infinite variety of method as well as by the power to seize on the one needed element of practical success. Every one of the six million telephones in use in the United States, and of the other millions in use through out the world, bears the imprint of his genius, as at one time the instruments bore his stamped name. For years his name was branded on every Bell telephone set, and his patents were a mainstay of what has been popularly called the “Bell monopoly.” Speaking of his own efforts in this field, Mr. Edison says:

“In 1876 I started again to experiment for the Western Union and Mr. Orton. This time it was the telephone. Bell invented the first telephone, which consisted of the present receiver, used both as a transmitter and a receiver (the magneto type). It was attempted to introduce it commercially, but it failed on account of its faintness and the extraneous sounds which came in on its wires from various causes. Mr. Orton wanted me to take hold of it and make it commercial. As I had also been working on a telegraph system employing tuning-forks, simultaneously with both Bell and Gray, I was pretty familiar with the subject. I started in, and soon produced the carbon transmitter, which is now universally used.

“Tests were made between New York and Philadelphia, also between New York and Washington, using regular Western Union wires. The noises were so great that not a word could be heard with the Bell receiver when used as a transmitter between New York and Newark, New Jersey. Mr. Orton and W. K. Vanderbilt and the board of directors witnessed and took part in the tests. The Western Union then put them on private lines. Mr. Theodore Puskas, of Budapest, Hungary, was the first man to suggest a telephone exchange, and soon after exchanges were established. The telephone department was put in the hands of Hamilton McK. Twombly, Vanderbilt’s ablest son-in-law, who made a success of it. The Bell company, of Boston, also started an exchange, and the fight was on, the Western Union pirating the Bell receiver, and the Boston company pirating the Western Union transmitter. About this time I wanted to be taken care of. I threw out hints of this desire. Then Mr. Orton sent for me. He had learned that inventors didn’t do business by the regular process, and concluded he would close it right up. He asked me how much I wanted. I had made up my mind it was certainly worth $25,000, if it ever amounted to anything for central-station work, so that was the sum I had in mind to stick to and get—obstinately. Still it had been an easy job, and only required a few months, and I felt a little shaky and uncertain. So I asked him to make me an offer. He promptly said he would give me $100,000. ‘All right,’ I said. ‘It is yours on one condition, and that is that you do not pay it all at once, but pay me at the rate of $6000 per year for seventeen years’—the life of the patent. He seemed only too pleased to do this, and it was closed. My ambition was about four times too large for my business capacity, and I knew that I would soon spend this money experimenting if I got it all at once, so I fixed it that I couldn’t. I saved seventeen years of worry by this stroke.”

Thus modestly is told the debut of Edison in the telephone art, to which with his carbon transmitter he gave the valuable principle of varying the resistance of the transmitting circuit with changes in the pressure, as well as the vital practice of using the induction coil as a means of increasing the effective length of the talking circuit. Without these, modern telephony would not and could not exist. [6] But Edison, in telephonic work, as in other directions, was remarkably fertile and prolific. His first inventions in the art, made in 1875-76, continue through many later years, including all kinds of carbon instruments —the water telephone, electrostatic telephone, condenser telephone, chemical telephone, various magneto telephones, inertia telephone, mercury telephone, voltaic pile telephone, musical transmitter, and the electromotograph. All were actually made and tested.

The principle of the electromotograph was utilized by Edison in more ways than one, first of all in telegraphy at this juncture. The well-known Page patent, which had lingered in the Patent Office for years, had just been issued, and was considered a formidable weapon. It related to the use of a retractile spring to withdraw the armature lever from the magnet of a telegraph or other relay or sounder, and thus controlled the art of telegraphy, except in simple circuits. “There was no known way,” remarks Edison, “whereby this patent could be evaded, and its possessor would eventually control the use of what is known as the relay and sounder, and this was vital to telegraphy. Gould was pounding the Western Union on the Stock Exchange, disturbing its railroad contracts, and, being advised by his lawyers that this patent was of great value, bought it. The moment Mr. Orton heard this he sent for me and explained the situation, and wanted me to go to work immediately and see if I couldn’t evade it or discover some other means that could be used in case Gould sustained the patent. It seemed a pretty hard job, because there was no known means of moving a lever at the other end of a telegraph wire except by the use of a magnet. I said I would go at it that night. In experimenting some years previously, I had discovered a very peculiar phenomenon, and that was that if a piece of metal connected to a battery was rubbed over a moistened piece of chalk resting on a metal connected to the other pole, when the current passed the friction was greatly diminished. When the current was reversed the friction was greatly increased over what it was when no current was passing. Remembering this, I substituted a piece of chalk rotated by a small electric motor for the magnet, and connecting a sounder to a metallic finger resting on the chalk, the combination claim of Page was made worthless. A hitherto unknown means was introduced in the electric art. Two or three of the devices were made and tested by the company’s expert. Mr. Orton, after he had me sign the patent application and got it in the Patent Office, wanted to settle for it at once. He asked my price. Again I said: ‘Make me an offer.’ Again he named $100,000. I accepted, providing he would pay it at the rate of $6000 a year for seventeen years. This was done, and thus, with the telephone money, I received $12,000 yearly for that period from the Western Union Telegraph Company.”

A year or two later the motograph cropped up again in Edison’s work in a curious manner. The telephone was being developed in England, and Edison had made arrangements with Colonel Gouraud, his old associate in the automatic telegraph, to represent his interests. A company was formed, a large number of instruments were made and sent to Gouraud in London, and prospects were bright. Then there came a threat of litigation from the owners of the Bell patent, and Gouraud found he could not push the enterprise unless he could avoid using what was asserted to be an infringement of the Bell receiver. He cabled for help to Edison, who sent back word telling him to hold the fort. “I had recourse again,” says Edison, “to the phenomenon discovered by me years previous, that the friction of a rubbing electrode passing over a moist chalk surface was varied by electricity. I devised a telephone receiver which was afterward known as the ‘loud-speaking telephone,’ or ‘chalk receiver.’ There was no magnet, simply a diaphragm and a cylinder of compressed chalk about the size of a thimble. A thin spring connected to the centre of the diaphragm extended outwardly and rested on the chalk cylinder, and was pressed against it with a pressure equal to that which would be due to a weight of about six pounds. The chalk was rotated by hand. The volume of sound was very great. A person talking into the carbon transmitter in New York had his voice so amplified that he could be heard one thousand feet away in an open field at Menlo Park. This great excess of power was due to the fact that the latter came from the person turning the handle. The voice, instead of furnishing all the power as with the present receiver, merely controlled the power, just as an engineer working a valve would control a powerful engine.

“I made six of these receivers and sent them in charge of an expert on the first steamer. They were welcomed and tested, and shortly afterward I shipped a hundred more. At the same time I was ordered to send twenty young men, after teaching them to become expert. I set up an exchange, around the laboratory, of ten instruments. I would then go out and get each one out of order in every conceivable way, cutting the wires of one, short-circuiting another, destroying the adjustment of a third, putting dirt between the electrodes of a fourth, and so on. A man would be sent to each to find out the trouble. When he could find the trouble ten consecutive times, using five minutes each, he was sent to London. About sixty men were sifted to get twenty. Before all had arrived, the Bell company there, seeing we could not be stopped, entered into negotiations for consolidation. One day I received a cable from Gouraud offering ‘30,000’ for my interest. I cabled back I would accept. When the draft came I was astonished to find it was for L30,000. I had thought it was dollars.”

In regard to this singular and happy conclusion, Edison makes some interesting comments as to the attitude of the courts toward inventors, and the difference between American and English courts. “The men I sent over were used to establish telephone exchanges all over the Continent, and some of them became wealthy. It was among this crowd in London that Bernard Shaw was employed before he became famous. The chalk telephone was finally discarded in favor of the Bell receiver—the latter being more simple and cheaper. Extensive litigation with new-comers followed. My carbon-transmitter patent was sustained, and preserved the monopoly of the telephone in England for many years. Bell’s patent was not sustained by the courts. Sir Richard Webster, now Chief-Justice of England, was my counsel, and sustained all of my patents in England for many years. Webster has a marvellous capacity for understanding things scientific; and his address before the courts was lucidity itself. His brain is highly organized. My experience with the legal fraternity is that scientific subjects are distasteful to them, and it is rare in this country, on account of the system of trying patent suits, for a judge really to reach the meat of the controversy, and inventors scarcely ever get a decision squarely and entirely in their favor. The fault rests, in my judgment, almost wholly with the system under which testimony to the extent of thousands of pages bearing on all conceivable subjects, many of them having no possible connection with the invention in dispute, is presented to an over-worked judge in an hour or two of argument supported by several hundred pages of briefs; and the judge is supposed to extract some essence of justice from this mass of conflicting, blind, and misleading statements. It is a human impossibility, no matter how able and fair-minded the judge may be. In England the case is different. There the judges are face to face with the experts and other witnesses. They get the testimony first-hand and only so much as they need, and there are no long-winded briefs and arguments, and the case is decided then and there, a few months perhaps after suit is brought, instead of many years afterward, as in this country. And in England, when a case is once finally decided it is settled for the whole country, while here it is not so. Here a patent having once been sustained, say, in Boston, may have to be litigated all over again in New York, and again in Philadelphia, and so on for all the Federal circuits. Furthermore, it seems to me that scientific disputes should be decided by some court containing at least one or two scientific men—men capable of comprehending the significance of an invention and the difficulties of its accomplishment—if justice is ever to be given to an inventor. And I think, also, that this court should have the power to summon before it and examine any recognized expert in the special art, who might be able to testify to FACTS for or against the patent, instead of trying to gather the truth from the tedious essays of hired experts, whose depositions are really nothing but sworn arguments. The real gist of patent suits is generally very simple, and I have no doubt that any judge of fair intelligence, assisted by one or more scientific advisers, could in a couple of days at the most examine all the necessary witnesses; hear all the necessary arguments, and actually decide an ordinary patent suit in a way that would more nearly be just, than can now be done at an expenditure of a hundred times as much money and months and years of preparation. And I have no doubt that the time taken by the court would be enormously less, because if a judge attempts to read the bulky records and briefs, that work alone would require several days.

“Acting as judges, inventors would not be very apt to correctly decide a complicated law point; and on the other hand, it is hard to see how a lawyer can decide a complicated scientific point rightly. Some inventors complain of our Patent Office, but my own experience with the Patent Office is that the examiners are fair-minded and intelligent, and when they refuse a patent they are generally right; but I think the whole trouble lies with the system in vogue in the Federal courts for trying patent suits, and in the fact, which cannot be disputed, that the Federal judges, with but few exceptions, do not comprehend complicated scientific questions. To secure uniformity in the several Federal circuits and correct errors, it has been proposed to establish a central court of patent appeals in Washington. This I believe in; but this court should also contain at least two scientific men, who would not be blind to the sophistry of paid experts. [7] Men whose inventions would have created wealth of millions have been ruined and prevented from making any money whereby they could continue their careers as creators of wealth for the general good, just because the experts befuddled the judge by their misleading statements.”

Mr. Bernard Shaw, the distinguished English author, has given a most vivid and amusing picture of this introduction of Edison’s telephone into England, describing the apparatus as “a much too ingenious invention, being nothing less than a telephone of such stentorian efficiency that it bellowed your most private communications all over the house, instead of whispering them with some sort of discretion.” Shaw, as a young man, was employed by the Edison Telephone Company, and was very much alive to his surroundings, often assisting in public demonstrations of the apparatus “in a manner which I am persuaded laid the foundation of Mr. Edison’s reputation.” The sketch of the men sent over from America is graphic: “Whilst the Edison Telephone Company lasted it crowded the basement of a high pile of offices in Queen Victoria Street with American artificers. These deluded and romantic men gave me a glimpse of the skilled proletariat of the United States. They sang obsolete sentimental songs with genuine emotion; and their language was frightful even to an Irishman. They worked with a ferocious energy which was out of all proportion to the actual result achieved. Indomitably resolved to assert their republican manhood by taking no orders from a tall-hatted Englishman whose stiff politeness covered his conviction that they were relatively to himself inferior and common persons, they insisted on being slave-driven with genuine American oaths by a genuine free and equal American foreman. They utterly despised the artfully slow British workman, who did as little for his wages as he possibly could; never hurried himself; and had a deep reverence for one whose pocket could be tapped by respectful behavior. Need I add that they were contemptuously wondered at by this same British workman as a parcel of outlandish adult boys who sweated themselves for their employer’s benefit instead of looking after their own interest? They adored Mr. Edison as the greatest man of all time in every possible department of science, art, and philosophy, and execrated Mr. Graham Bell, the inventor of the rival telephone, as his Satanic adversary; but each of them had (or intended to have) on the brink of completion an improvement on the telephone, usually a new transmitter. They were free-souled creatures, excellent company, sensitive, cheerful, and profane; liars, braggarts, and hustlers, with an air of making slow old England hum, which never left them even when, as often happened, they were wrestling with difficulties of their own making, or struggling in no-thoroughfares, from which they had to be retrieved like stray sheep by Englishmen without imagination enough to go wrong.”

Mr. Samuel Insull, who afterward became private secretary to Mr. Edison, and a leader in the development of American electrical manufacturing and the central-station art, was also in close touch with the London situation thus depicted, being at the time private secretary to Colonel Gouraud, and acting for the first half hour as the amateur telephone operator in the first experimental exchange erected in Europe. He took notes of an early meeting where the affairs of the company were discussed by leading men like Sir John Lubbock (Lord Avebury) and the Right Hon. E. P. Bouverie (then a cabinet minister), none of whom could see in the telephone much more than an auxiliary for getting out promptly in the next morning’s papers the midnight debates in Parliament. “I remember another incident,” says Mr. Insull. “It was at some celebration of one of the Royal Societies at the Burlington House, Piccadilly. We had a telephone line running across the roofs to the basement of the building. I think it was to Tyndall’s laboratory in Burlington Street. As the ladies and gentlemen came through, they naturally wanted to look at the great curiosity, the loud-speaking telephone: in fact, any telephone was a curiosity then. Mr. and Mrs. Gladstone came through. I was handling the telephone at the Burlington House end. Mrs. Gladstone asked the man over the telephone whether he knew if a man or woman was speaking; and the reply came in quite loud tones that it was a man!”

With Mr. E. H. Johnson, who represented Edison, there went to England for the furtherance of this telephone enterprise, Mr. Charles Edison, a nephew of the inventor. He died in Paris, October, 1879, not twenty years of age. Stimulated by the example of his uncle, this brilliant youth had already made a mark for himself as a student and inventor, and when only eighteen he secured in open competition the contract to install a complete fire-alarm telegraph system for Port Huron. A few months later he was eagerly welcomed by his uncle at Menlo Park, and after working on the telephone was sent to London to aid in its introduction. There he made the acquaintance of Professor Tyndall, exhibited the telephone to the late King of England; and also won the friendship of the late King of the Belgians, with whom he took up the project of establishing telephonic communication between Belgium and England. At the time of his premature death he was engaged in installing the Edison quadruplex between Brussels and Paris, being one of the very few persons then in Europe familiar with the working of that invention.

Meantime, the telephonic art in America was undergoing very rapid development. In March, 1878, addressing “the capitalists of the Electric Telephone Company” on the future of his invention, Bell outlined with prophetic foresight and remarkable clearness the coming of the modern telephone exchange. Comparing with gas and water distribution, he said: “In a similar manner, it is conceivable that cables of telephone wires could be laid underground or suspended overhead communicating by branch wires with private dwellings, country houses, shops, manufactories, etc., uniting them through the main cable with a central office, where the wire could be connected as desired, establishing direct communication between any two places in the city…. Not only so, but I believe, in the future, wires will unite the head offices of telephone companies in different cities; and a man in one part of the country may communicate by word of mouth with another in a distant place.”

All of which has come to pass. Professor Bell also suggested how this could be done by “the employ of a man in each central office for the purpose of connecting the wires as directed.” He also indicated the two methods of telephonic tariff—a fixed rental and a toll; and mentioned the practice, now in use on long-distance lines, of a time charge. As a matter of fact, this “centralizing” was attempted in May, 1877, in Boston, with the circuits of the Holmes burglar-alarm system, four banking-houses being thus interconnected; while in January of 1878 the Bell telephone central-office system at New Haven, Connecticut, was opened for business, “the first fully equipped commercial telephone exchange ever established for public or general service.”

All through this formative period Bell had adhered to and introduced the magneto form of telephone, now used only as a receiver, and very poorly adapted for the vital function of a speech-transmitter. From August, 1877, the Western Union Telegraph Company worked along the other line, and in 1878, with its allied Gold & Stock Telegraph Company, it brought into existence the American Speaking Telephone Company to introduce the Edison apparatus, and to create telephone exchanges all over the country. In this warfare, the possession of a good battery transmitter counted very heavily in favor of the Western Union, for upon that the real expansion of the whole industry depended; but in a few months the Bell system had its battery transmitter, too, tending to equalize matters. Late in the same year patent litigation was begun which brought out clearly the merits of Bell, through his patent, as the original and first inventor of the electric speaking telephone; and the Western Union Telegraph Company made terms with its rival. A famous contract bearing date of November 10, 1879, showed that under the Edison and other controlling patents the Western Union Company had already set going some eighty-five exchanges, and was making large quantities of telephonic apparatus. In return for its voluntary retirement from the telephonic field, the Western Union Telegraph Company, under this contract, received a royalty of 20 per cent. of all the telephone earnings of the Bell system while the Bell patents ran; and thus came to enjoy an annual income of several hundred thousand dollars for some years, based chiefly on its modest investment in Edison’s work. It was also paid several thousand dollars in cash for the Edison, Phelps, Gray, and other apparatus on hand. It secured further 40 per cent. of the stock of the local telephone systems of New York and Chicago; and last, but by no means least, it exacted from the Bell interests an agreement to stay out of the telegraph field.

By March, 1881, there were in the United States only nine cities of more than ten thousand inhabitants, and only one of more than fifteen thousand, without a telephone exchange. The industry thrived under competition, and the absence of it now had a decided effect in checking growth; for when the Bell patent expired in 1893, the total of telephone sets in operation in the United States was only 291,253. To quote from an official Bell statement:

“The brief but vigorous Western Union competition was a kind of blessing in disguise. The very fact that two distinct interests were actively engaged in the work of organizing and establishing competing telephone exchanges all over the country, greatly facilitated the spread of the idea and the growth of the business, and familiarized the people with the use of the telephone as a business agency; while the keenness of the competition, extending to the agents and employees of both companies, brought about a swift but quite unforeseen and unlooked-for expansion in the individual exchanges of the larger cities, and a corresponding advance in their importance, value, and usefulness.”

The truth of this was immediately shown in 1894, after the Bell patents had expired, by the tremendous outburst of new competitive activity, in “independent” country systems and toll lines through sparsely settled districts—work for which the Edison apparatus and methods were peculiarly adapted, yet against which the influence of the Edison patent was invoked. The data secured by the United States Census Office in 1902 showed that the whole industry had made gigantic leaps in eight years, and had 2,371,044 telephone stations in service, of which 1,053,866 were wholly or nominally independent of the Bell. By 1907 an even more notable increase was shown, and the Census figures for that year included no fewer than 6,118,578 stations, of which 1,986,575 were “independent.” These six million instruments every single set employing the principle of the carbon transmitter—were grouped into 15,527 public exchanges, in the very manner predicted by Bell thirty years before, and they gave service in the shape of over eleven billions of talks. The outstanding capitalized value of the plant was $814,616,004, the income for the year was nearly $185,000,000, and the people employed were 140,000. If Edison had done nothing else, his share in the creation of such an industry would have entitled him to a high place among inventors.

This chapter is of necessity brief in its reference to many extremely interesting points and details; and to some readers it may seem incomplete in its references to the work of other men than Edison, whose influence on telephony as an art has also been considerable. In reply to this pertinent criticism, it may be pointed out that this is a life of Edison, and not of any one else; and that even the discussion of his achievements alone in these various fields requires more space than the authors have at their disposal. The attempt has been made, however, to indicate the course of events and deal fairly with the facts. The controversy that once waged with great excitement over the invention of the microphone, but has long since died away, is suggestive of the difficulties involved in trying to do justice to everybody. A standard history describes the microphone thus:

“A form of apparatus produced during the early days of the telephone by Professor Hughes, of England, for the purpose of rendering faint, indistinct sounds distinctly audible, depended for its operation on the changes that result in the resistance of loose contacts. This apparatus was called the microphone, and was in reality but one of the many forms that it is possible to give to the telephone transmitter. For example, the Edison granular transmitter was a variety of microphone, as was also Edison’s transmitter, in which the solid button of carbon was employed. Indeed, even the platinum point, which in the early form of the Reis transmitter pressed against the platinum contact cemented to the centre of the diaphragm, was a microphone.”

At a time when most people were amazed at the idea of hearing, with the aid of a “microphone,” a fly walk at a distance of many miles, the priority of invention of such a device was hotly disputed. Yet without desiring to take anything from the credit of the brilliant American, Hughes, whose telegraphic apparatus is still in use all over Europe, it may be pointed out that this passage gives Edison the attribution of at least two original forms of which those suggested by Hughes were mere variations and modifications. With regard to this matter, Mr. Edison himself remarks: “After I sent one of my men over to London especially, to show Preece the carbon transmitter, and where Hughes first saw it, and heard it—then within a month he came out with the microphone, without any acknowledgment whatever. Published dates will show that Hughes came along after me.”

There have been other ways also in which Edison has utilized the peculiar property that carbon possesses of altering its resistance to the passage of current, according to the pressure to which it is subjected, whether at the surface, or through closer union of the mass. A loose road with a few inches of dust or pebbles on it offers appreciable resistance to the wheels of vehicles travelling over it; but if the surface is kept hard and smooth the effect is quite different. In the same way carbon, whether solid or in the shape of finely divided powder, offers a high resistance to the passage of electricity; but if the carbon is squeezed together the conditions change, with less resistance to electricity in the circuit. For his quadruplex system, Mr. Edison utilized this fact in the construction of a rheostat or resistance box. It consists of a series of silk disks saturated with a sizing of plumbago and well dried. The disks are compressed by means of an adjustable screw; and in this manner the resistance of a circuit can be varied over a wide range.

In like manner Edison developed a “pressure” or carbon relay, adapted to the transference of signals of variable strength from one circuit to another. An ordinary relay consists of an electromagnet inserted in the main line for telegraphing, which brings a local battery and sounder circuit into play, reproducing in the local circuit the signals sent over the main line. The relay is adjusted to the weaker currents likely to be received, but the signals reproduced on the sounder by the agency of the relay are, of course, all of equal strength, as they depend upon the local battery, which has only this steady work to perform. In cases where it is desirable to reproduce the signals in the local circuit with the same variations in strength as they are received by the relay, the Edison carbon pressure relay does the work. The poles of the electromagnet in the local circuit are hollowed out and filled up with carbon disks or powdered plumbago. The armature and the carbon-tipped poles of the electromagnet form part of the local circuit; and if the relay is actuated by a weak current the armature will be attracted but feebly. The carbon being only slightly compressed will offer considerable resistance to the flow of current from the local battery, and therefore the signal on the local sounder will be weak. If, on the contrary, the incoming current on the main line be strong, the armature will be strongly attracted, the carbon will be sharply compressed, the resistance in the local circuit will be proportionately lowered, and the signal heard on the local sounder will be a loud one. Thus it will be seen, by another clever juggle with the willing agent, carbon, for which he has found so many duties, Edison is able to transfer or transmit exactly, to the local circuit, the main-line current in all its minutest variations.

In his researches to determine the nature of the motograph phenomena, and to open up other sources of electrical current generation, Edison has worked out a very ingenious and somewhat perplexing piece of apparatus known as the “chalk battery.” It consists of a series of chalk cylinders mounted on a shaft revolved by hand. Resting against each of these cylinders is a palladium-faced spring, and similar springs make contact with the shaft between each cylinder. By connecting all these springs in circuit with a galvanometer and revolving the shaft rapidly, a notable deflection is obtained of the galvanometer needle, indicating the production of electrical energy. The reason for this does not appear to have been determined.

Last but not least, in this beautiful and ingenious series, comes the “tasimeter,” an instrument of most delicate sensibility in the presence of heat. The name is derived from the Greek, the use of the apparatus being primarily to measure extremely minute differences of pressure. A strip of hard rubber with pointed ends rests perpendicularly on a platinum plate, beneath which is a carbon button, under which again lies another platinum plate. The two plates and the carbon button form part of an electric circuit containing a battery and a galvanometer. The hard-rubber strip is exceedingly sensitive to heat. The slightest degree of heat imparted to it causes it to expand invisibly, thus increasing the pressure contact on the carbon button and producing a variation in the resistance of the circuit, registered immediately by the little swinging needle of the galvanometer. The instrument is so sensitive that with a delicate galvanometer it will show the impingement of the heat from a person’s hand thirty feet away. The suggestion to employ such an apparatus in astronomical observations occurs at once, and it may be noted that in one instance the heat of rays of light from the remote star Arcturus gave results.




[From Franklin’s Works, edited in ten volumes by John Bigelow, Vol. I, pages 276-281, copyright by G. P. Putnam’s Sons, New York.]

Dr. Stuber, the author of the first continuation of Franklin’s life, gives this account of the electrical experiments of Franklin:—

FRANKLIN IDENTIFIES LIGHTNING WITH ELECTRICITY“His observations he communicated, in a series of letters, to his friend Collinson, the first of which is dated March 28, 1747. In these he shows the power of points in drawing and throwing off the electrical matter, which had hitherto escaped the notice of electricians. He also made the grand discovery of a plus and minus, or of a positive and negative state of electricity. We give him the honour of this without hesitation; although the English have claimed it for their countryman, Dr. Watson. Watson’s paper is dated January 21, 1748; Franklin’s July 11, 1747, several months prior. Shortly after Franklin, from his principles of the plus and minus state, explained in a satisfactory manner the phenomena of the Leyden phial, first observed by Mr. Cuneus, or by Professor Muschenbroeck, of Leyden, which had much perplexed philosophers. He showed clearly that when charged the bottle contained no more electricity than before, but that as much was taken from one side as thrown on the other; and that to discharge it nothing was necessary but to produce a communication between the two sides by which the equilibrium might be restored, and that then no signs of electricity would remain. He afterwards demonstrated by experiments that the electricity did not reside in the coating as had been supposed, but in the pores of the glass itself. After the phial was charged he removed the coating, and found that upon applying a new coating the shock might still be received. In the year 1749, he first suggested his idea of explaining the phenomena of thunder gusts and of aurora borealis upon electric principles. He points out many particulars in which lightning and electricity agree; and he adduces many facts, and reasonings from facts, in support of his positions.

“In the same year he conceived the astonishingly bold and grand idea of ascertaining the truth of his doctrine by actually drawing down the lightning, by means of sharp pointed iron rods raised into the regions of the clouds. Even in this uncertain state his passion to be useful to mankind displayed itself in a powerful manner. Admitting the identity of electricity and lightning, and knowing the power of points in repelling bodies charged with electricity, and in conducting fires silently and imperceptibly, he suggested the idea of securing houses, ships and the like from being damaged by lightning, by erecting pointed rods that should rise some feet above the most elevated part, and descend some feet into the ground or water. The effect of these he concluded would be either to prevent a stroke by repelling the cloud beyond the striking distance or by drawing off the electrical fire which it contained; or, if they could not effect this they would at least conduct the electrical matter to the earth without any injury to the building.

FRANKLIN IDENTIFIES LIGHTNING WITH ELECTRICITY“It was not until the summer of 1752 that he was enabled to complete his grand and unparalleled discovery by experiment. The plan which he had originally proposed was, to erect, on some high tower or elevated place, a sentry-box from which should rise a pointed iron rod, insulated by being fixed in a cake of resin. Electrified clouds passing over this would, he conceived, impart to it a portion of their electricity which would be rendered evident to the senses by sparks being emitted when a key, the knuckle, or other conductor, was presented to it. Philadelphia at this time afforded no opportunity of trying an experiment of this kind. While Franklin was waiting for the erection of a spire, it occurred to him that he might have more ready access to the region of clouds by means of a common kite. He prepared one by fastening two cross sticks to a silk handkerchief, which would not suffer so much from the rain as paper. To the upright stick was affixed an iron point. The string was, as usual, of hemp, except the lower end, which was silk. Where the hempen string terminated, a key was fastened. With this apparatus, on the appearance of a thundergust approaching, he went out into the commons, accompanied by his son, to whom alone he communicated his intentions, well knowing the ridicule which, too generally for the interest of science, awaits unsuccessful experiments in philosophy. He placed himself under a shed, to avoid the rain; his kite was raised, a thunder-cloud passed over it, no sign of electricity appeared. He almost despaired of success, when suddenly he observed the loose fibres of his string to move towards an erect position. He now presented his knuckle to the key and received a strong spark. How exquisite must his sensations have been at this moment! On his experiment depended the fate of his theory. If he succeeded, his name would rank high among those who had improved science; if he failed, he must inevitably be subjected to the derision of mankind, or, what is worse, their pity, as a well-meaning man, but a weak, silly projector. The anxiety with which he looked for the result of his experiment may easily be conceived. Doubts and despair had begun to prevail, when the fact was ascertained, in so clear a manner, that even the most incredulous could no longer withhold their assent. Repeated sparks were drawn from the key, a phial was charged, a shock given, and all the experiments made which are usually performed with electricity.”

%d bloggers like this: